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To describe the evolution of separated entities remaining separated, we propose
to study endomorphisms (join-preserving maps, sending atoms to atoms) of the
separated product of cao lattices (complete, atomistic orthocomplemented
lattices). Morphisms have been used successfully to describe the evolution of
entities, and the separated product is a model for the property lattice of separated
systems; its set of atoms is the Cartesian product of each atom space. Let + be
the separated product of two cao lattices having the covering property and f an
endomorphism of +. We prove that the center ](+) of + is the power set of
V1 3 V2 where Vi is the atom space of ](+i) (Theorem 1), f preserves irreducible
components (Theorem 2), and if + is irreducible there exist two endomorphisms
f 1 and f 2 and a permutation s such that the restriction of f to atoms is given by
f ( p1, p2) 5 ( f 1( ps(1)), f 2( ps(2))) (Theorem 3). For generalizations of these results
to separated products of families of cao lattices, we develop new general arguments
involving a topology we define on the set of atoms of a cao lattice.

1. INTRODUCTION AND NOTATIONS

We first recall some notions used in the foundation of physics to describe
physical systems. For details, see Piron (1976), Aerts (1982), and Faure et
al. (1995).

A question a on a physical system S is an experiment with two outcomes
called “yes” and “no.” The inverse a, of a question a is the question obtained
by inverting the answers “yes” and “no.” The product PiPI ai of a family of
questions {ai}iPI is the question which consists in choosing one question ai

and to attribute to PiPI ai the answer thus obtained. The trivial question
denoted I consists in measuring anything (or doing nothing) and answering
always “yes.” A question a is said to be certain if when a physicist decides
to perform it, the answer “yes” comes out with certainty. Finally, a question
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a is said to be stronger than a question b if we have that “a certain” implies
“b certain”. This preorder relation induces an equivalence relation. To each
equivalence class [a] there corresponds a property a of the system which is
said to be actual if a is certain. The set + of equivalence classes is a complete
lattice, the greatest lower bound of a family {ai}iPI being the class defined
by the question PiPI ai and the maximal element being the class defined by
the trivial question I. The lattice + is called the property lattice. The state
of the system is the set of all actual properties. Two states « and «8 are said
to be orthogonal, « ' «8, if there exists a question a such that a is certain
when the system is in the state « and a, is certain when the system is in
the state «8. For a given state «, write p« :5 ∧{a P +; a P «}; then, by
definition, p« P « and « 5 [p«, I ] :5 {a P +; p« , a}. If p is an atom of
+, then p is actual if and only if the state of the system is «p 5 [p, I ]. If
one supposes that for each state « of the system, (i) there exists a question
a« such that a« is true if and only if the state of the system is orthogonal to
«, (ii) p« is an atom of +, and (iii) every question on the physical system
is equivalent to a product of primitive questions, then + is atomistic and
orthocomplemented by a8 5 ∧{[a«]; p« , a}, and + is orthoisomorphic2 to
#((, '), the lattice of biorthogonal subsets (A'' 5 A) of the set ( of
possible states.

Further, a property a is called classical if for any state «, either a is
actual or a8 is actual. The set ](+) of all classical properties of + is a
subcomplete, atomistic orthocomplemented (cao) lattice. The system is said
to be purely quantum if and only if ](+) 5 {O, I}. We will see later that
](+) is the center of + and so + is purely quantum if and only if + is
irreducible. Finally + is orthoisomorphic to the Cartesian product of the
irreducible components of +.

To describe evolution, one has to remark that a given evolution is nothing
more than part of an experimental project. Let Qt denote the family of all
questions which can be performed on the system at a time t. Consider a
question a P Qt1 and denote by F01 (a) the question defined by “evolve the
system from time t0 to time t1 and perform a.” So, by definition of
Qt0, F01(a) P Qt0 and F01 defines an application from Qt1 to Qt0. One can
check that F01 preserves the product and the equivalence relation, so that
F01 defines a map f01: +t1 → +t0 which preserves the meet and sends Ot1
to Ot0. If for a certain state p of the system at time t0, the system may
disappear during the evolution, then p ∧ f01 (It1) 5 Ot0 since for It1 to be
certain, the system has to exist. Let p0 , f01 (It1) be the state of the system
at time t0. Define c10( p0) as the smallest actual property of the system at

2 We call an orthoisomorphism a bijection between two cao lattices which preserves the join,
the meet, and the orthocomplementation.
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time t1, that is, c10( p0) 5 ∧{a1 P +t1; p0 , f01(a1)}. If for every state p0 ,
f01(It1), c10( p0) is an atom of +t1, then the final state of the system is
completely determined and the evolution is said to be deterministic. Moreover,
the application c10: [Ot0, f01(It1)] → +t1 preserves the join and sends atoms
to atoms and Ot0 to Ot1. We will call such a map a morphism. If c10 preserves
irreducible components, then the evolution of classical variables does not
depend on the actual quantum state. So, for a model of property lattice and
evolution given by a cao lattice and a morphism, it is important for the
physical interpretation that the morphism preserve irreducible components.
It is clear that not any endomorphism of a cao lattice preserves irreducible
components, as we will see on an example in Section 3.

We now briefly recall the construction of the model proposed by Aerts
for the property lattice of a physical system S constituted of two separated
subsystems S1 and S2.

Two questions a and b are said to be testable together if and only if
there exists an experimental project E(a, b) with four outcomes, labeled by
yy, yn, ny, and nn, such that a , Eyy,yn, a, , Eny,nn, b , Eyy,ny , and b, ,
Eyn,nn, where, for example, Eyy,yn is the question consisting in performing E(a,
b) and answering “yes” if the result is yy or yn and “no” otherwise. Two
questions a and b which are testable together are said to be separated if and
only if, when for an arbitrary state p of the system there is a certain chance
to obtain an answer for a and another for b, then for this state of the system
there is a certain chance to obtain this combination for E(a, b). Finally, the
systems S1 and S2 are said to be separated if and only if every question of
S1 is separated from every question of S2. The model of Aerts is given by a
set Q of questions on all the system S: Q is the union of Q1, Q2, and all the
questions of the form E(a1, a2).,. where a1 P Q1 and a2 P Q2, closed relative
to the product of questions. From this, one can prove that the set of states
of S is given by ( 5 (1 3 (2 and that the orthogonality relation between
states is given by

(«1, «2) 'V̀ (h1, h2) ⇔ «1 ' h1 or «2 ' h2 (1)

(Aerts, 1982, Theorems 19 and 21). One can also prove that if S1 and S2

satisfy the basic axioms mentioned above, then S described by Q also satisfies
these axioms, so that the property lattice + of S is cao and

+ . +1 V̀ +2 :5 #((1 3 (2, 'V̀) (2)

We can now turn to the mathematical part of this paper. For this purpose,
we need to introduce some convenient notations and to recall some results
about cao lattices.

Let + be a cao lattice. We denote ( the set of atoms of +, and ' the
binary relation on ( induced by the orthocomplementation of +: p ' q ⇔
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p , q8. Then + is orthoisomorphic to #((, ') and ' is an orthogonality
relation, that is, ' is symmetric, antireflexive, and separating, i.e., for every
pair p, q of atoms of +, there exists an atom k such that p ' k and q '⁄ k
or equivalently, every singleton of ( is biorthogonal. Reciprocally, if ' is
an orthogonality relation on a set (, then #((, ') is a cao lattice. For two
elements a and b of a cao lattice, we will write a ∨ b 5 a ø b if and only
if every atom under a ∨ b is under a or under b. Finally, we denote by 3(V)
the cao lattice of subsets of V .

We will denote by ](+) the sub cao lattice of elements of + such that
a' 5 ac, the complementary set of a in (, and by V the set of atoms of
](+). It is easy to verify that for every family {ai}iPI of elements of + and
for every a P ](+) we have that ai 5 (ai ∧ a) ∨ (ai ∧ a'), ai 5 ∨aPV(ai ∧
a) and (∨iPI ai) ∧ b 5 ∨iPI (ai ∧ b). From these relations it follows that +
is orthoisomorphic to the Cartesian product PaPV [O, a], where [O, a] 5
{a P +; a , a} and the orthocomplementation is the induced orthocomple-
mentation ar 5 a' ∧ a (arr 5 ((a' ∧ a) ∨ ac)' 5 a). ](+) is the center of
+: Indeed, let a P ](+); then + . [O, a] 3 [O, a'], and reciprocally, let
a P +, and +1 and +2 be two cao lattices such that + . +1 3 +2 and a
corresponds to (I1, O2); then a' corresponds to (O1, I2); so a' 5 ac. In
consequence, purely quantum corresponds to irreducible. For an atom p of
+, we denote by ]( p) the central cover of p, that is, ]( p) 5 ∧{a P V ;
p , a}.

For a cao lattice having the covering property, we have the following
property we will use frequently: let p and q be two atoms of +; then ]( p) 5
](q) ⇔ p ∨ q Þ p ø q. With the relations we gave before, it is easy to see
that if ]( p) Þ ](q), then p ∨ q 5 p ø q. To show the converse, we first
have to remark that in a cao lattice having the covering property, we have
that p ∨ q 5 p ø q ⇒ p ' q or p 5 q. Indeed, if p ∨ q 5 p ø q, then x
:5 ( p ∨ q) ∧ q' 5 p ∧ q' and so O , x , p. If x 5 p, then p , q' and
if x 5 O, then [p' ∧ q'] ∨ q 5 I, that is, I covers p' ∧ q', so p 5 q. In
consequence, it remains to show that if ]( p) 5 ](q) and p ' q, then p ∨
q Þ p ø q. We write p , q if there exist a finite number of atoms z1, . . . ,
zn such that p '⁄ z1, zi '⁄ zi11, and zn '⁄ q. We call note [p] the equivalence
class of p; then [p] P ](+) and [p] 5 ]( p) because if q ¸ [p], then q P
[p]'. Finally, the relation p ∨ q Þ p ø q is transitive: Indeed, consider three
atoms p, z, and q such that there exist r1 different from p and z, and r2

different from z and q, with r1 , p ∨ z and r2 , z ∨ q. Write a 5 r1 ∨ r2

and x 5 ( p ∨ q) ∧ a. By the covering property, p , q ∨ a, which implies
that x Þ O. Moreover, if x 5 a, then z , p ∨ q, otherwise x is an atom
different from p and q.

Finally, for any irreducible cao lattice having the covering property of
rank greater than or equal to 4, there exist a vector space V on a field K, an
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involution s on K, and a Hermitian form f on V such that + . #(V/K*,
') where ' is induced by f (Maeda and Maeda, 1970; Piron, 1964). If f is
a nontrivial endomorphism of +, that is, a join-preserving map, sending
atoms to atoms such that the rank of Im( f ) is greater than or equal to 3,
then f is induced by a semilinear map g on V (Faure and Frölicher, 1993,
Definition 4.1.1 and Proposition 4.1.2; Faure and Frölicher, 1994, Theorem
5.1.5). Moreover, if + is orthomodular, if K 5 R, C, or H, and if the
involution is the usual one, then V is a Hilbert space. In this case, if g is
quasilinear and if f ( p) ' f (q) implies p ' q for any atoms p and q, then g
is unitary or antiunitary (Faure et al., 1995, Theorem 4.2).

2. THE SEPARATED PRODUCT

The separated product can be defined in the same way as in (1) and (2)
for an arbitrary family {+a}aPv of cao lattices by

V̀
aPv

+a 5 #1 p
aPv

(a, 'V̀2 (3)

where

p 'V̀ q ⇔ ∃ a P v such that pa 'a qa

It is easy to check that 'V̀ is separating, and moreover an orthogonality
relation. In consequence, V̀aPv +a is also a cao lattice.

The only result concerning the separated product is due to Aerts: if the
separated product V̀ +a has the covering property or if it is orthomodular,
then at most one +a is not equal to its center (Aerts, 1982, Theorem 30, for
the case #v 5 2). To prove this, one first has to remark that in a cao lattice
+ having the covering property or which is orthomodular, we have the
following relation: p ∨ q 5 p ø q ⇒ p ' q or p 5 q. We have already
proved this when + has the covering property. If + is orthomodular, then
[( p ∨ q) ∧ q'] ∨ q 5 p ∨ q, so that if x :5 ( p ∨ q) ∧ q' 5 O, then p ∨ q 5 q.

Finally, if, for example +a Þ ](+a), then there exist two atoms p and
q of +a such that p '⁄ a q. Let b Þ a, and let r, s be two atoms of +b. Let
x and y be atoms of the separated product such that xa 5 p, xb 5 r, ya 5 q,
yb 5 s, and xg 5 yg for a Þ g Þ b. Then p ∨V̀ q 5 p ø q (Lemma 1.b)
and so, if the separated product has the covering property or if it is orthomodu-
lar, p 'V̀ q, that is, r 'b s, which shows that ](+b) 5 +b.

The results that follow are original; they cannot be founded in Aerts
(1982). Before proving the theorems announced in the abstract, we need two
preliminary lemmas and a definition we will use throughout the paper:
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Definition 1. Let {+a}aPv be a family of cao lattices. (a) For any
nonempty subset Ba of (a, we define o(Ba) , PaPv (a by o(Ba)b 5 (b for
b Þ a and o(Ba)a 5 Ba. Moreover, we put o(0⁄ ) 5 0⁄ .

(b) Let p and q be two atoms of the separated product. We define C( p, q)
, PaPv (a by C( p, q)a 5 pa ∨a qa.

From now on, we will drop the subscripts V̀ and a when no confusion
can occur.

Lemma 1. Let {+a}aPv be a family of cao lattices and a and b elements
of PaPv +a such that aa Þ O Þ ba, ∀a P v. We have:

(a) a P V̀
aPv

+a.

(b) a ∨ b 5 a ø b øaPv ya, where ya
a 5 aa ∨ ba and ya

b 5 ab ∧ bb for
b Þ a.

(c) We note xa
a 5 aa and xa

b 5 bb for b Þ a. Suppose that aa , ba,
∀a P v. Then ∨aPv xa 5 øaPvxa.

(d) Suppose that v is finite. Let x1 5 a, x2
1 5 b1, and x2

i 5 ai for i $
2, xk

i 5 bi if i # k 2 1 and xk
i 5 ai if i $ k. Then ∨kPv xk 5 økPv zk, where

zk
k 5 ak ∨ bk, zk

i 5 ai if i $ k 1 1 and zk
i 5 bi if i # k 2 1.

(e) Let {pb; b P v} be a set of atoms of V̀aPv +a such that pb
a Þ

pg
a, ∀a, b, g P v. Then ∨bPv pb 5 øbPv pb.

(f) Let p be an atom of V̀aPv +a and {qb; b P v} be a set of atoms
such that for every b, #{a; qb

a Þ pa} 5 #v. Then p ∧ (∨bPv qb) 5 O.

Proof. (a) By definition (3) of 'V̀, we have that a' 5 øaPv o(a'
a ). So,

a'' 5 1ø
aPv

o(a'
a )2

'

5 ù
aPv

o(a''
a ) 5 a

(b) Let us first consider a set X , PaPv +a. Then, in the same way as
before, we find

~ X 5 Hù
xPX

ø
aPv

o(xa
')J'

5 H ø
hPvX

ù
xPX

o(x'
h(x))J'

5 ù
hPvX

ø
aPIm(h)

o 1 ~
xPh21(a)

xa2
5 ø

j:vX→Im(?)
ù

hPvX
o(~{h21(j(h))j(h)})

5 ø
j:vX→Im(?)

xj (4)

For part (b), we have X 5 {a, b}. As a consequence, if h is a constant
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function, then h21(j(h))j(h) 5 {aj(h), bj(h)} and otherwise h21 (j(h))j(h) is equal
to aj(h) or bj(h). Thus, for any a P v, xj

a is equal to aa, ba, aa ∧ ba, or aa ∨ ba.
If, for example, xj

a 5 aa for a certain a, then x j
b , ab, ∀b Þ a, since

if x j
a 5 aa, j(h) 5 h(a) for every function h P vX, such that h(b) 5 a.

Finally, if x j
a 5 aa ∨ ba, then x j

b 5 ab ∧ bb because j(h) Þ a for every
nonconstant function whose image contains a.

(c) In this case, X 5 {xa; a P v}. Because of the hypothesis aa , ba,
∨{h21(j(h))j(h)} 5 ba for every constant function h. In consequence, x j , b,
∀j. Moreover, since vX contains the identity, there exists a such that x j , xa.

(d) In this case, X 5 økPv xk. Let h P vv be a step constant function,
that is, for any k P Im(h), h21(k)k is equal to ak or bk. Denote ka those k in
Im(h) such that h21(k)k 5 ak and similary kb. If Im(h) contains no kb , then
Im(h) is not bounded. Otherwise, there exist kb and ka such that kb , ka.

Let i P v and h be a step constant function. If there exists kb , i in
Im(h), put j(h) 5 kb , otherwise put j(h) 5 ka with ka . i. For any other
function h, choose j(h) such that ∨{h21(j(h))j(h)} 5 aj(h) ∨ bj(h). Then xj 5 zi.

Finally, let i be the smallest element in v such that xj
i ñ bi. Then j(h) 5

h(1) for every function h of the type h(xk) 5 i, ∀ k . i and h(xk) 5 j . i,
∀k # i. As a result, xj

k , ak, ∀k . i, and so xj , zi.
(e) This result follows directly from the fact that for any nonconstant

function g P vv, there exists a bijection h21 of v such that g(a) Þ h21(a),
∀ a P v.

(f) If xj is an atom, then xj Þ p since by hypothesis, there exists
injective functions h P vv such that qb

h(b) Þ ph(b), ∀b P v. Thus, for p to
be in ∨bPv qb, there must exist j such that xj

a is of rank at least 2 for a set
R of a such that #R 5 #v. This is impossible because vv contains injective
functions from v to R. n

Part (c) of Lemma 1 will be used in the proof of Theorem 3, part (d)
in Remark 2, and parts (e) and (f) in Remark 1.

Lemma 2. Let {+a}aPv be a family of cao lattices having the covering
property. Denote by t the topology on PaPv (a which admits the biorthogonal
subsets as a subbasis of closed sets. Let p and q be two atoms of V̀aPv +a.
Suppose that for any a, C( p, q)a contains either only one atom or an infinity.
Then C( p, q) is a connected set for the topology t.

Proof. Let f be a closed set of t. Then, by definition of t, f 5
ùg øng

j51 X jg, where X jg P V̀aPv +a.
We write C for C( p, q). The lemma is a direct consequence of the

following remark: for any biorthogonal X , C different from C, their exists
an atom p , C such that X , øaPv o( pa) ∧ C. Indeed, we know that X is
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of the form (4) and since every +a has the covering property, ∨{h21(a)a} is
an atom or Ca. If there exists no step constant function in vX, that is, if for
any h, there exists a such that ∨{h21 (a)a} 5 Ca, then X 5 C. Let h be a
step constant function. Then xj , o(∨j(h)), ∀j.

Thus, for any closed sets f and f 8 of t, different from C and 0⁄ , there
exists a finite set R of atoms of C such that C \R , ( f c ù f 8c) ù C. n

Remark 1. Suppose that v is finite (write I 5 v) and that for any k P
v and any pair rk , sk of atoms of Ck there exists an injective or constant
function from [0, 1] to Ck such that ck(0) 5 rk and ck(1) 5 sk. Then C is
connected by arcs. Indeed, let r and s be two atoms of C. Define c from
[0, 1] to C by c(t) 5 (c1(t), c2(t), . . .). Let x be a biorthogonal subset of C.
Since I is finite, x contains at most a finite set of atoms {pk; k P I} such
that p j

k Þ pl
k, ∀j Þ l and k, otherwise, there is no step constant function in

I I and x 5 C. As a consequence, c21(x) is a finite set of points, which shows,
by definition of t, that c is continuous.

But if v is infinite and Ca is not an atom ∀ a, then C is not connected
by arcs. First, remark that the argument for finite v does not work in this
case because for every noncompact converging sequence tn , c21 (∨n c(tn)) is
not closed since by Lemma 1(e), ∨n c(tn) 5 ønc(tn).

Consider two atoms r and s of C such that ra Þ sa ∀ a. Let c: [0, 1] →
C with c(0) 5 r and c(1) 5 s and V :5 {t P [0, 1]; #{a; c(t)a Þ sa} Þ
#v}. Let t0 be the greatest lower bound of V . If t0 ¸ V , consider a sequence
tn → t0 with tn P V . Then c21(∨n c(tn)) is not closed, since by Lemma 1( f ),
∨n c(tn) ∧ c(t0) 5 O. If t0 P V , consider a sequence tn → t0 with tn , t0.
Thus, c is not continuous.

We now state or first result concerning the center of the separated
product. For the proof of part (b) of Theorem 1, we develop a new general
argument involving the topology defined in Lemma 2.

Theorem 1. Let {+a}aPv be a family of cao lattices.
(a) Suppose that v is finite. Then the separated product V̀i#n +i is

irreducible if and only if +i is irreducible for all i. Moreover, we have that
](V̀i#n +i) 5 3(Pi#n Vi).

(b) Suppose that for any a P v, +a has the covering property and the
join of every pair of atoms of +a having the same central cover contains an
infinity of atoms. Then the result of part (a) is true for an arbitrary family.

Proof. (a) This proof is only based on the definition (1) of 'V̀. We first
prove that +1 V̀ +2 is irreducible if and only if +1 and +2 are irreducible.
Since the separated product is associative, the same result is true for any
finite family of cao lattices.

First, remark that a cao lattice is irreducible if and only if for any
nonempty subset A , ( different from (, A' is strictly include in Ac, the
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complementary set of A, that is, if and only if A'c ù Ac Þ 0⁄ . Indeed, if
A' 5 Ac, then A , A'' 5 Ac' , Acc 5 A, so A 5 A'' and A' 5 Ac, which
is impossible in an irreducible cao lattice.

Suppose, for example, that +1 is reducible; then there exists A , (1

such that A' 5 Ac 5 (1 \A. So, by definition, (A, (2)' 5 (A', (2) 5 (Ac,
(2) 5 (1 3 (2 \ (A, (2), which is impossible if +1 V̀ +2 is irreducible.

Suppose now that +1 and +2 are irreducible. Let A , (1 3 (2 a
nonempty set different from (1 3 (2; then we have to show that X :5 Ac ù
A'c Þ 0⁄ . By definition,

A' 5 ù
(p,q)PA

[( p', (2) ø ((1, q')]

A'c 5 ø
(p,q)PA

[( p'c, (2) ù ((1, q'c)] 5 ø
(p,q)PA

( p'c, q'c)

For a subset S , A, write S1 :5 {p P (1.( p, (2) ù S Þ 0⁄ } and S2 :5 {q P
(2.((1, q) ù S Þ 0⁄ }. Then,

Ac 5 ù
(p,q)PA

[( pc, (2) ø ((1, qc)] 5 (Ac
1, (2) ø ((1, Ac

2) ø
SP3*(A)

(Sc
1, (A \S)c

2)

where 3*(A) 5 3(A) \{A, 0⁄ } and 3(A) is the set of subsets of A. So,

X 5 Ac ù A'c 5 ø
(p,q)PA

{( p'c ù Ac
1, q'c) ø ( p'c, q'c ù Ac

2)

ø
SP3*(A)

( p'c ù Sc
1, q'c ù (A \S)c

2)}

If, for example, there exists p P A1 such that p'c ù Ac
1 Þ 0⁄ , then X Þ

0⁄ and the proof is finished. In consequence, we will suppose that ∀p P A1

and q P A2, p'c , A1 and q'c , A2. This implies

A1 5 ø
pPA1

p , ø
pPA1

p'c , A1

⇒ A1 5 ø
pPA1

p'c 5 1ù
pPA1

p'2
c

5 1ø
pPA1

p2
'c

5 A'c
1

and similarly for A2. Since by hypothesis, +1 and +2 are irreducible, it follows
that A1 5 (1 and A2 5 (2.

Let p0 P A1. We write bp0 :5 {q P (2.( p0, q) P A} (Fig. 1). We can
suppose that bp0 Þ (2 because A Þ (1 3 (2. There exists q0 P bp0 such
that q'c

0 ,⁄ bp0. Indeed, suppose that q'c , bp0 for every q P bp0. Then,
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Fig. 1. Proof of Theorem 1, part (a).

bp0 5 ø
qPbp0

q , ø
qPbp0

q'c , bp0 so bp0 5 1ø
qPbp0

q2
'c

5 b'c
p0

which is impossible because +2 is irreducible. Let S :5 A \ ( p0, bp0); then
p0 P p'c

0 ù Sc
1 and (A \S)2 5 bp0; so q'c

0 ù (A \S)c
2 5 q'c

0 ù bc
p0 Þ 0⁄ , which

shows that X Þ 0⁄ .
The remainder of the proof is an easy consequence. Let p be an atom

of + :5 V̀i#n +i. Write z( p): i → ]( pi). We have to show that ]( p) 5 z( p).
We first verify that z( p) P ](+). From Lemma 1(a), z( p) P + and by

definition of 'V̀,

z( p)' 5 ø
i#n

o(]( pi)') 5 ø
i#n

o(]( pi)c) 5 ( \z( p)

Finally, since p , ]( p) ∧ z( p), we have that ]( p) , z( p), and so, since
[O, z( p)] 5 V̀i#n [O, ]( pi)], ]( p) 5 z( p).

(b) The only thing we need to prove is that if +a are irreducible, then
the separated product + :5 V̀aPv +a is also irreducible. For the remainder
it is easy to check that the argument of part (a) applies also for an arbi-
trary family.

Let t be the topology on ( defined in Lemma 2: Since +a are irreducible,
by Lemma 2, ( is a connected set of t.

To conclude, it remains to remark that in a cao lattice, if ((, t) is
connected, then + is irreducible since every element of ](+) is clopen. n

The remainder of this section is devoted to some examples of sepa-
rated products.

Example 1. Let us illustrate Theorem 1 by a trivial example: Let + be
a cao lattice. We first remark that + . •.•IO V̀ +. So, by Theorem 1, 3(V) V̀
+ is orthoisomorphic to the Cartesian product P

V
+.
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Example 2. Consider + 5 P(C2)V̀ P(C2), where P(C2) is the lattice of
subspaces of C2. We denote by ( the set of rays of C2; I 5 ( 3 (; p1, q1,
r1, p2, q2, r2, x, and y elements of (; and p 5 ( p1, p2), q 5 (q1, q2), and r 5
(r1, r2,) are three atoms of +. An easy calculation gives [see Lemma 1(b)]

p ∨ q 5 5
p ø q if p1 Þ q1 and p2 Þ q2

( p1, () if p1 5 q1 and p2 Þ q2

((, p2) if p1 Þ q1 and p2 5 q2

r ∨ ( p1, () 5 H( p1, () if r1 5 p1

( p'
1 , r '

2 )' otherwise

r ∨ ( p ø q) 5 5
I if p1 Þ r1 Þ q1 and p2 Þ r2 Þ q2

( p'
1 , q'

2 )' if r1 Þ q1 and r2 5 q2

(q'
1 , p'

2 )' if r1 Þ p1 and r2 5 p2

???

So, apart from 0, I, and the atoms, + contains four types of elements: ( p1, p2)
ø (q1, q2) with p1 Þ q1 and p2 Þ q2, ( p1, (), ((, p2), and finally
( p1, p2)' 5 ( p'

1 , () ø ((, p'
2 ). This is summarized in Fig. 2.

Moreover, + neither has the covering property nor it is orthomodular.
It is a consequence of the Aerts theorem and it can be verified explicitly.
For example, let us put a :5 ( p1, p2) ø (q1, q2) with p1 Þ q1, p2 Þ q2, p1

Þ q'
1 , and p2 Þ q'

2 , b :5 ( p1, () ø ((, q2), and r 5 (r1, r2) with p1 Þ r1

Þ q1 and p2 Þ r2 Þ q2. Then, a' 5 ( p'
1 , q'

2 ) ø (q'
1 , p'

2 ), so a' ∧ b 5 O
and in consequence, a ∨ (a' ∧ b) 5 a Þ b. Moreover, r ∨ a 5 I, which
does not cover a.

Example 3. Let *1 and *2 be two Hilbert spaces over C and P(*1 ^
*2) be the lattice of closed subspaces of the tensor product of *1 and *2.
We denote the orthogonality relation in *1 ^ *2 induced by the scalar
product by '^, Let m: P(*1)V̀P(*2) → P(*1 ^ *2) be defined by

m(a) :5 ^{p ^ q; ( p, q) , a}& 5 a'^'^

Let ( be the set of product vectors in *1 ^ *2 and A a subset of (.
Since A'V̀ 5 A'^ ù (, it is easy to check that m is an injective order-
preserving map. Indeed, if m(a) 5 m(b), then a'^ 5 b'^ and so a'V̀ 5
b'V̀, that is, a 5 b since a and b are biorthogonal.

Moreover, the image of m contains the set C of all closed subspaces V
such that V and V '^ are spanned by product vectors, and on m21 (C ), m
preserves also the orthocomplementation. Indeed, define A 5 V ù ( and
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Fig. 2. The lattice as seen from above. The structure in dashed lines repeats for every box
(a, b), (a, g), (d, b) (d, g), (a', b')', (a', g')', . . . .

B 5 V '^ ù (. Then A'V̀ , V '^ and so A'V̀ , B and similarly B'V̀ , A.
Moreover, B , A'V̀ and A , B'V̀. As a consequence, A and B are biorthogonal
and A'V̀ 5 B.

In Example 2, we can prove that dim(m(x'V̀)) 5 dim(m(x)'^), ∀x P
P(C2) V̀ P (C2), that is, that Im(m) 5 C. So, since P (C2 ^ C2) is orthomodular
and P(C2) V̀ P(C2) is not, the application m preserves neither the meet nor
the join. On can verify this explicitly: Remark that m(b) 5 ^{p1 ^ q2, p1 ^
p2, p'

1 ^ q2}&. To see that m(b) ∧ m (a'V̀) Þ m (b ∧ a'V̀), it suffices to show
that m(b) ∧ m(a)'^ Þ O, in other words, that there exist two numbers a and
b such that

^p1 ^ p2, ap1 ^ q2 1 bp1 ^ p2 1 p'
1 ^ q2& 5 0

^q1 ^ q2, ap1 ^ q2 1 bp1 ^ p2 1 p'
1 ^ q2& 5 0
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that is, such that

1|p1|
2^p2, q2& |p1|

2|p2|
2

|q2|
2^q1, p1& ^q1, p1&^q2, p2&2 1ab2 5 2 1 0

^q1, p'
1 &|q2|

22
Indeed, the determinant |p1|

2 ^q1, p1&[.^p2, q2&.2 2 |p2|
2|q2|

2] is different
from 0 since p2 Þ q2 and q1 Þ p'

1 .

Example 4. Finally, we give some examples of cao lattices which are
not the separated product of two sublattices. First, by the Aerts theorem and
Theorem 1, irreducible cao lattices which are orthomodular or have the
covering property are never orthoisomorphic to the separated product of
nontrivial cao lattices. But there are also irreducible cao lattices which are
not orthomodular, which do not have the covering property, and are not
isomorphic to the separated product of nontrivial cao lattices. Indeed, let
#(S, 'S) be the lattice of biorthogonal subsets of an infinite-dimensional,
noncomplete pre-Hilbertian space over C and let + be the cao lattice of Fig.
3. In the separated product of nontrivial cao lattices there always exist two
elements a and b different from O and I such that a ñ b, b ñ a, and a ∨
b 5 a ø b [Lemma 1(b)]. This is clearly not the case in +.

3. JOIN-PRESERVING MAPS

This section is devoted to join-preserving maps between separated prod-
ucts. We recall that we call morphism a join-preserving map between two
cao lattices, sending atoms to atoms and O to O, defined on a segment D 5
[O, M] called the domain.

We first give a characterization of morphisms that we will use frequently:
Let +0 and +1 be two cao lattices and f a morphism from +0 to +1 with
domain D 5 [O, M ]. Let g: M , (0 → (1 be the restriction of f to the
atoms of D. Then, the inverse image by g of a biorthogonal subset of (1 is
a biorthogonal subset of (0; more precisely, (g21(A'))'' 5 g21(A') for any
subset A , (1. Moreover, f(a) 5 g(a)'', ∀a , M. Indeed, let p be an atom

Fig. 3. Example 4.
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of +0 such that p P (g21(A'))''; then p is in the domain of f and since f
preserves the join, we have that g( p) 5 f( p) , ∨qPg21(A') f(q) , A'.

Reciprocally, let +0 and +1 be two cao lattices, M P +0 and g: M →
(1 such that the inverse image by g of any biorthogonal subset is a biorthogo-
nal subset; then f : [O, M ] → +1 defined by f (a) :5 g(a)'' is a morphism.
First, f (O) 5 O. Let {ab}bPV be a family of elements of [O, M ]; then by
definition, ∨bPV f (ab) , f (∨bPV ab). Moreover, since the inverse image by
g of a biorthogonal subset is a biorthogonal subset, ∨bPV ab , g21(∨bPV

f (ab)) and so g(∨bPV ab) , ∨bPV f (ab) and f (∨bPV ab) , ∨bPV f (ab).
Finally, we remark that a bijective morphism f : D → +1 is an isomor-

phism from D to +1, that is, a bijection which preserves the join and the
meet. Indeed, since f is injective and preserves the join,

f (a) , f (b) ⇔ f (a) ∨ f (b) 5 f (b)

⇔ f (a ∨ b) 5 f (b)

⇔ a ∨ b 5 b ⇔ a , b

which shows that f (a) , f (b) implies a , b. In consequence, if q is an
atom such that q 5 f (x) , f (a) ∧ f (b), then x , a and x , b, so q , f (a
∧ b). Moreover, since f preserves the order, we have that f (a ∧ b) , f (a) ∧ f (b).

We remark that our definition of morphism differs from that in Moore
(1995), where morphisms are partially defined maps g from (0 \_0 to (1

such that _0 ø g21 (A'') is a biorthogonal for all A , (1. Following Moore
(1995), we call Prop8 the category of cao lattices with our definition of
morphisms. Then, it is easy to check that the coproduct in Prop8 is the
Cartesian product of cao lattices (Pa +a, fa) with ( fa(a))a 5 a and ( fa(a))b

5 O for b Þ a. But the separated product is not the product in this category
(if indeed there is one).

This can be seen in two steps. First, let +1 and +2 be two elements of
Prop8 and suppose that there exists a product P. Denote f1 and f2 the projection
maps and h: (P → (1 3 (2 the map defined by h( p) 5 ( f1( p), f2( p)). Then
h is injective since the diagram

+1

f1 g1
↑




↑



P ←———— +2

g

f2 g2




↓↑




+2
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must admit a unique factorization, where gi is the morphism sending I to
fi (p). Further, h is surjective since for any atom ( p1, p2) P (1 3 (2 the
preceding diagram must admit a factorization when gi are the morphisms
sending I to pi.

Second, let p Þ q be two atoms of a cao lattice +. Let f be the morphism
such that the following diagram commutes:

+
f1 id↑



↑




P ←———— +f

f2 id



↓↑




+

Then f1( f ( p)) 5 p, f2( f ( p)) 5 p, f1( f (q)) 5 q, and f2( f (q)) 5 q. Suppose
that there exists an atom z different from p and q under p ∨ q. Then f ( p) Þ
f (z) Þ f (q) and since f preserves the join, f (z) , f ( p) ∨ f (q), which shows
by Lemma 1(b) that P Þ + V̀ + (take for example + 5 +4).

We now return to the purpose of the paper. For this section, we also
need a preliminary lemma:

Lemma 3. Consider a family {+0a}aPv ø +1 of cao lattices and a
morphism f from +0 :5 V̀aPv +0a into +1. Let a P v. Suppose that +0a

has the covering property. Let p and q be atoms of +0 in the domain of f
such that pb 5 qb, ∀b Þ a, and such that pa and qa have the same central
cover. Denote respectively by x and y the images by f of p and q.

(a) If x Þ y, then x ∨ y Þ x ø y.
(b) Suppose, moreover, that +1 5 V̀aPv8 +1a, where +1a are cao lattices.

Then there exists at most one a P v8 such that xa Þ ya.

Proof. (a) Suppose that x ∨ y 5 x ø y. Since +0a has the covering
property and pa and qa have the same central cover, there exist an atom ra,
different from pa and qa, such that ra , pa ∨ qa. Let r be the atom of +0

defined by rb 5 pb, ∀b Þ a. So, by Lemma 1(b), r is in the domain of f
and since f preserves the join, f (r) 5 x or f (r) 5 y. Suppose, for example,
that f (r) 5 x. Then, since by the covering property and Lemma 1(b), p ∨
q 5 p ∨ r, we have

x ø y 5 x ∨ y 5 f ( p) ∨ f (q) 5 f ( p ∨ q) 5 f ( p ∨ r) 5 f ( p) ∨ f (r) 5 x

which shows that x 5 y.
(b) It is an immediate consequence of part (a) and Lemma 1(b). n
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When the evolution of a physical system can be described by an endomor-
phism f of the property lattice +, the fact that f preserves the irreducible
components of + means that the evolution of classical variables does not
depend on the quantum variables. When + has the covering property, this
is easily verified since two atoms have the same central cover if and only if
p ∨ q Þ p ø q.

It is clear that in the general case, morphisms do not necesseraly preserve
irreducible components, as we can see in the following example:

Example 5. Let + 5 #(Zn , 'n), where k'n :5 {k 1 2, . . . , k 1 n 2
2} for n $ 4 and k'n :5 {k 1 1, . . . , k 1 n 2 1} for 2 # n # 3. It is easy
to verify that 'n is an orthogonality relation. Further, let g: Z5 → Z2 be the
map sending 0 to 0 and 1 to 1. It easy to check that the inverse image by g
of any biorthogonal subset is biorthogonal, that is, that g defines a morphism
f : +5 → +2 with domain M 5 {0, 1}. Remark that this is the smallest
example since, as is easy to prove, the smallest irreducible cao lattice is +4.
Moreover, there are only two irreducible cao lattices with five atoms: +5 and
the same lattice as in Fig. 3, but with +3 instead of (S, 'S). The smallest
example with a morphism with maximal domain, that is, with D 5 [O, I ] is
f : +6 → +2 with f sending atoms 0, 1, and 2 on atom 0 and atoms 3, 4, and
5 on atom 1.

In our case, that is, when + 5 V̀aPv +0a, endomorphisms preserve
irreducible components if, among others, the following hypothesis on the
domain D 5 [O, M ] is verified:

HM1 Atoms p and q in D having the same central cover are connected,
that is:

Definition 2. Let {+a}aPv be a family of cao lattices, D 5 [O, M ] be
a segment of V̀aPv +a and p and q be two atoms of D having the same
central cover.

(a) If v is finite, we say that p and q are connected if there exists a
finite set of atoms r0, ??? rn in D ù +(p) such that r0 5 p, rn 5 q and for
any k , n there exists at most one j such that rk

j Þ rk11
j .

(b) If v is not finite, we say that p and q are connected if C( p, q) P D.

Let us give an example: Suppose that #v 5 2; then by Theorem 1(a),
p and q are connected, for example, if (q1, p2) P D. Remark that Hypothesis
HM1 is trivially satisfied if the domain of the morphism is maximal, that is,
if D 5 +0.

For the proof of part (b) of Theorem 2, we develop a new general
argument in the category Prop8 involving the topology defined in Lemma 2.
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Theorem 2. Consider a family {+0a}aPv ø +1 of cao lattices and a
morphism f from +0 :5 V̀aPv +0a into +1. Suppose that Hypothesis HM1 is
satisfied and that +0a has the covering property ∀a.

(a) If v is finite, then for every atom p of D we have that f (]( p) ∧ M )
, ]( f ( p)).

(b) If for any a P v, the join of every pair of atoms of +0a having the
same central cover contains an infinity of atoms, then the result of part (a)
is true for an arbitrary family.

Proof. (a) Let p 5 ( p1, . . . , pn) and q 5 (q1, . . . , qn) be two atoms in
the domain of f having the same central cover. First, by Theorem 1(a) we
know that ]( pi) 5 ](qi), ∀i # n. We write x 5 f ( p) and y 5 f (q).

If there exists only one j such that pj Þ qj , then the theorem is a direct
consequence of Lemma 3(a) since if ](x) Þ ]( y), then x ∨ y 5 x ø y.

Otherwise, consider the atoms defined in Hypothesis HM1. Then by
hypothesis, ]( p) 5 ](r1) 5 ??? 5 ](rn21) 5 ](q) and we have that

]( f ( p)) 5 ]( f (r1)), ]( f (r1)) 5 ]( f (r2)), . . .

]( f (rn21)) 5 ]( f (q))

(b) Let +0 and +1 be two cao lattices and f be a morphism from +0

into +1 with domain D 5 [O, M ] and g its restriction to the atoms of D.
As we have seen, the inverse image by g of any biorthogonal subset of

S1 is a biorthogonal subset. In consequence, g is a continuous application
from (M, t0) into (S1, t1), where ti is the topology defined in Lemma 2. For
this topology, elements of ](+1) are clopen and, thus, connected sets are
contained in atoms of ](+1). Since the image by a continuous application
of a connected set is a connected set, to prove the theorem it suffices, to
show that if two atoms p and q of D have the same central cover, there exists
a connected set # containing them and contained in the domain M.

For our case, by Lemma 2 and Hypothesis HM1, we can put # 5
C( p, q). n

Remark 2. The argument used in case (b) works of course also for a
finite family of cao lattices. By hypothesis HM1 and lemma 1(d), it suffices
to put # ∨k50???nrk 5 øk50???nzk. Indeed, # , M and # is the union of connected
sets zk with zk ù zk11 Þ 0/ , that is, # is a connected set. Remark, that if v
is infinite countable, first # is also connected but does not contains q if
qk 5 pk only for a finite set of k, and second that if q ∧ # 5 O, # ø q is
not connected.

Corollary 1. Suppose moreover that +1 5 V̀aPv +1a, where +1a are
cao lattices having the covering property and that f is bijective.
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(a) In both cases of Theorem 2, if +1 satisfies the same hypotheses as
+0 and if the domain of f is maximal, that is, if D 5 +0, then f (]( p)) 5
]( f ( p)) for every atom p of +0.

(b) If for every a P v the join of any pair of atoms of +ka (where k 5
0 or 1) having the same central cover contains an infinity of atoms, then
f (]( p) ∧ M ) 5 ]( f ( p)) for every atom p of D.

Proof. Part (a) is easy. For part (b), suppose that f (]( p) ∧ M ) Þ ]( f ( p)).
Since f is surjective, there exists a P D such that f (a) 5 ]( f ( p)). Then,
a 5 qgPV0 a ∧ g and in consequence, since f is injective, ]( f ( p)) 5
qgPV0 f (a ∧ g), which is impossible, because by Lemma 2, ]( f ( p)) is a
connected set. n

We now turn to Theorem 3. We need some more notations: Let {+0i}iPI

and {+1i}iPI be two finite families of cao lattices and f a morphism from +0

:5 V̀iPI +0i into +1 :5 V̀iPI +1i with domain D 5 [O, M ]. For an atom p
of D, k P I, and rk an atom of +k , we write

x k( p) :5 `
iÞk

o( pi) ∧ M

Mk( p) :5 Pk(x k( p)), Mk :5 ø
qPD

Mk(q) (5)

where Pi: PiPI S0l → S0l is the natural projection and q are atoms. We remark
that Mk( p) is a nonempty biorthogonal subset [Lemma 1(a)], but that in
general Mk is not biorthogonal. We will need one more hypotheses on the
domain of f. For k P I we have:

Hk
M2 For atoms p Þ q in D such that pi Þ qi only for one i P I, Xk :5

Mk( p) ∧ Mk(q) Þ O, and if f (xk( p)) and f (xk(q)) are not atoms,
then f ( yk( p)) and f ( yk(q)) are not atoms, where, for example
yk

k( p) 5 Xk and yk
i 5 pi for i Þ k.

We remark that this hypothesis is also trivially satisfied for any k P I
if the domain is maximal, since in this case Mk( p) 5 (0k. Moreover, if
#I 5 2 anf if +0i are irreducible, it easy to see that this hypothesis implies
that atoms in D are connected.

Theorem 3. Let {+0a}aPv and {+1a}aPv be two families of irreducible
cao lattices having the covering property, s a bijection of v, { fa}aPv a family
of morphisms from +0a into +1s(a) with domain Da 5 [O, Ma], and f a
morphism from +0 5 V̀aPv +0a into +1 5 V̀aPv +1a with domain D 5
[O, M ].
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(a) The application PaPv fa: +0 → s(+1) :5 V̀aPv +1s(a) defined by

1 p
aPv

fa2(a) :5 ~
p,a

{ fa( pa)}aPv

where p are atoms, is a morphism, bijective if and only if fa are bijective.
(b) Suppose that v is finite and write I 5 v. If the Hypotheses Hk

M2 and
HM1 are satisfied for every k P I, and if f(M ) is not trivial in the sense that
for any i P I and for any atom pi P +1i, f(M ) is not contained in o( pi), then
there exist a bijection s of I and a family of join-preserving maps sending
atoms to atoms { fi}iPI from +0i into +1s(i) defined only on the subset Mi of
atoms of (0i defined in (5) (which are not necessary biorthogonal), such that
f 5 s21 + (PiPI fi).

As a consequence, if the subsets Mi are biorthogonal, then fi are morph-
isms, so in particular if D 5 +0.

Proof. (a) We call gi the restriction of fi to atoms. For an atom p of +0,
we write g( p) :5 {gi (pi)}iPI. Now, g( p) is an atom of s(+1) and as we
remarked at the beginning of this section, it suffices to show that the inverse
image by g of any biorthogonal subset a of s((1) :5 PiPI (is(i) is a biorthogo-
nal subset of (0:

g21(a) 5 g211ù
p,a'

p'2 5 ù
p,a'

1g21 1ø
iPI

o( p'
s(i))22

5 ù
p,a'

Fø
iPI

g21(o( p'
s(i)))G

where p are atoms and by definition of o(???),

g21(o( p'
s(i)))i 5 g21

i ( p'
s(i)), g21(o( p'

s(i)))j 5 g21
j ((1s( j))

Since f i is a morphism and g21
i ( p'

s(i)) , g21
i ((1s(i)) 5 Mi, by Lemma 1(c),

the elements between brackets are biorthogonal subsets.
Finally, we only verify that if fi are bijective, then f :5 PiPI fi is also

bijective, the other implication is easy to show.
First f is bijective on the atoms, so b 5 f (g21(b)) for every b P s(+0),

and thus f is surjective.
To show that f is injective, it suffices to see that g21( f (a)) 5 a, that is,

that g21( f (a)) , a, for every a P +0. By (4), we know that

a'' 5 ù
hPva

ø
aPIm(h)

o(h21(a)'')
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Moreover,

f (a) 5 1ù
p,a

ø
aPv

o( fa( pa)')2
'

5 1ø
hPva

ù
aPIm(h)

o(ga(h21(a))')2
'

5 ù
hPva

ø
aPIm(h)

o( fa(h21(a)''))

since fa preserves the join.
As a result, if g( p) , f (a), then for all h P va there exist a P v such

that ga( pa) P fa(h21(a)''), which shows, since fa is a bijective morphism,
that pa P h21(a)'', that is, that g( p) , f (a) implies p , a.

(b) The proof of this part is divided into four steps:

Step 1. Let p be an atom of +0 in the domain D (Fig. 4.). Then for any
k P I, there exist jk( p) P I such that Pl ( f (xk( p))) is an atom for all l Þ jk( p)
[for notations, see (5)]. Indeed, let qk be an atom of +0k in Mk( p). Let q be
the atom such that qi 5 pi , ∀i Þ k. Suppose that f (q) Þ f ( p). By Lemma
3(b) we know that there exists only one j P I such that Pj ( f (q)) Þ Pj ( f ( p)).
Denote this j by jk( p). Suppose now that there exist an atom rk in Mk( p) and
l Þ jk( p) such that Pl( f (r)) Þ Pl( f (p)), where r is the atom such that ri 5
pi , ∀i Þ k. So by Lemma 3(b), Pjk(p)( f (r)) 5 Pjk(p)( f ( p)) and since
Pjk(p)( f (q)) Þ Pjk(p)( f ( p)), Pl( f (q)) 5 Pl( f ( p)), and so Pl( f (r)) Þ Pl( f (q))
and Pjk(p)( f (r)) Þ Pjk(p)( f (q)), which is impossible because of Lemma 3(b).

Step 2. Next, for any k P I, we show that there exists j P I such that
for any p P D and any l Þ j, Pl( f (xk( p))) is an atom of +1l, in other words
that for all k P I, one can always choose the function jk(?) such that jk( p) 5
jk(q) ∀p, q P D (Fig. 5).

Let l P J and p and q be atoms in D such that pi 5 qi , ∀i Þ l and pl Þ
ql , and let k Þ l. Suppose that f (xk( p)) and f (xk(q)) are not atoms and that
jk( p) Þ jk(q) [for notations, see (5)].

Fig. 4. Proof of Theorem 3(b), Step 1.
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Fig. 5. Proof of Theorem 3(b), Step 2.

Then, we have that

Pjk(p)( f ( yk(q))) , Pjk(p)( f ( yk( p))) (6)

Pjk(q)( f ( yk(p))) , Pjk(q)( f ( yk( q)))

(for notations, see Hypothesis Hk
M2). Indeed, suppose, for example, that

Pjk(p)( f ( yk(q))) ∧ Pjk(p)( f ( yk( p))) 5 O (7)

By Hypothesis Hk
M2, there exist two atoms rk Þ sk P Xk :5 Mk( p) ∧ Mk(q)

such that f (sq) Þ f (r q), where r q
i 5 sq

i 5 qi, ∀i Þ k, r q
k 5 rk, and sq

k 5 sk.
But, (7) implies that Pjk(q) (f (rq)) 5 Pjk(q)( f ( rp)) and Pjk(q)( f ( sq)) 5
Pjk(q)( f ( sp)). As a consequence, since Pjk(q)( f ( yk(p))) is an atom, ( f ( qp) 5
f (rq), which is a contradiction.

By (6) and Lemma 1(b), since f preserves the join, we have that

f ( yk( p) ∨ yk(q)) 5 f ( yk( p)) ø f ( yk(q)) (8)

since for any m different from jk(q) and jk(p), Pm( f ( yk( p)) 5 Pm( f ( yk(q))).
But since +0l has the covering property, there exist an atom tl different from
pl and ql such that tl , pl ∨ ql. Define yk(t) by yk(t)l 5 tl and yk(t)j 5 yk( p)j

for j Þ l. Then yk(t) , yk( p) ∨ yk(q). So yk(t) is in D and by (8), f ( yk(t)) ,
f ( yk( p)) ø f ( yk(q)). Since there exists only one m P I such that Pm( f ( yk(t)))
is not an atom, f( yk(t)) , f( yk( p)) or f( yk(t)) , f( yk (q)). Suppose that f( yk

(t)) , f( yk( p)). Then, by the covering property and by Lemma 1(b) we have
that yk(t) ∨ yk( p) 5 yk( p) ∨ yk(q), that is, since f preserves the join, f( yk(q))
, f( yk( p)), which is impossible because of Hypothesis Hk

M2; f( yk(q)) is not
an atom.

We have shown that for all k P I, jk( p) 5 jk(q), ∀p, q P D, such that
pi 5 qi , ∀i Þ j, for a given j P I. Moreover, the same result for arbitrary
atoms p and q in D follows since by hypothesis they are connected. As a
consequence, we can define jk as jk( p) for an arbitrary atom p in D.
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Step 3. We now show that if k Þ l, then jk Þ jl , in other words, since
is I is finite, that s: k → jk is a permutation of I.

Let k Þ l, and suppose that jk 5 jl; then I \s(I ) Þ 0⁄ . Let m P I \s(I ).
Then Pm + f is constant, which contradicts the hypothesis on the image of f.
Indeed, let p and q be atoms in D and i P I such that pk 5 qk , ∀k Þ i. Then,
since ji Þ m, by Step 1, Pm( f( p)) 5 Pm( f(q)).

Step 4. Let pk P Mk [for notation, see (5)]. Let q be an atom in D such
that qk 5 pk. We define fk as

fk( pk) :5 Ps(k)( f(q)) with q P D and qk 5 pk

We now have to check that this definition is independent of the choice of q.
Let r be an atom of D such that rk 5 pk and ri different from qi only for i 5
j. So q and r are in x j(q) and since we have shown in Step 3 that s is a
permutation, we know that Ps(k) f(x j(q)) is an atom, which shows that Ps(k)

(f(q)) 5 Ps(k)(f(r)). n

Remark 3. In the general case where the lattices +ij are reducible, the
applications fi depend on the atoms of the center of +0 which are of the form
a 5 (a1, . . . , an), where ai are atoms of ](+0i). But in general, fi depend
on a and not only on ai. Let us give a simple example: Let * be a Hilbert
space over the complex numbers C, and U1 Þ U2 two unitary applications
on *. Put +0 5 P (*) V̀ (P(*) 3 P(*)), +1 5 P(*) V̀ P(*), f( p, q, O)
5 (U1( p), U2(q)), and f( p, O, q) 5 (U2( p), U1(q)).

Remark 4. Suppose that for any i P I and for any atoms pi Þ qi in Mi ,
there exist two atoms p and q in D such that Pi (p) 5 pi , Pi (q) 5 qi , and
pk '⁄ qk for any k Þ i. Suppose, moreover, that f satisfies f( p) ' f(q) → p
' q for any atoms p and q P D. Then we have that fi (pi) ' fi (qi) → pi '
qi for any atoms pi and qi P Mi. Indeed, if fi (pi) ' fi (qi), then f( p) ' f(q);
thus, by the hypothesis on f, p ' q, and by the hypothesis on the domain
and definition of 'V̀, pi ' qi.

As a consequence, if, moreover, +0i are Hilbertian lattices over the
complex field, if Mi are biorthogonal (i.e., fi are morphisms), and if the rank
of Im( fi) is greater than or equal to 3, then fi are induced by semilinear maps
which are unitary or antiunitary if they are quasilinear (see the introduction).

Finally, if the domain is maximal, then we have that the fi preserve the
orthogonality relation for all i (that is, fi (pi) ' fi (qi) ⇔ pi ' qi , ∀ pi , qi P
+0i) if and only if PiPI fi preserves the orthogonality relation 'V̀.

4. CONCLUSION

We have shown that in a model where two separated entities with
classical degrees of freedom are described by the separated product of two
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Cartesian products over the classical degrees of freedom of Hilbertian lattices
and the evolution is described by a morphism, the systems can only interact
via their classical variables. We made two hypotheses on the domain of the
morphism, HM1 and HM2, which physically mean essentially that for a given
initial state of the first system, there exist a large number of states of the
second system for which the system does not disappear during the evolution.

In a forthcoming paper, we will show that the relation: F01 (a) P Qt0
for every a P Qt1, is a priori not satisfied in the construction of Aerts of
the property lattice of two separated entities when they interact. This work
was supported in part by the Swiss National Science Foundation.
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