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To describe the evolution of separated entities remaining separated, we propose
to study endomorphisms (join-preserving maps, sending atoms to atoms) of the
separated product of cao lattices (complete, atomistic orthocomplemented
|attices). Morphisms have been used successfully to describe the evolution of
entities, and the separated product is a model for the property |attice of separated
systems; its set of atoms is the Cartesian product of each atom space. Let & be
the separated product of two cao lattices having the covering property and f an
endomorphism of &. We prove that the center %(¥) of & is the power set of
0, X Q, where (); isthe atom space of %(;) (Theorem 1), f preservesirreducible
components (Theorem 2), and if & isirreducible there exist two endomorphisms
f1 and f? and a permutation o such that the restriction of f to atoms is given by
f(p1, P2) = (f*(Poqy), FA(Po(z)) (Theorem 3). For generalizations of these results
to separated products of famii iesof caolattices, wedevel op new general arguments
involving a topology we define on the set of atoms of a cao lattice.

1. INTRODUCTION AND NOTATIONS

Wefirst recall some notions used in the foundation of physicsto describe
physical systems. For details, see Piron (1976), Aerts (1982), and Faure et
al. (1995).

A question a on aphysical system Sisan experiment with two outcomes
called “yes’ and “no.” Theinverse «™ of aquestion « isthe question obtained
by inverting the answers “yes’ and “no.” The product IT;, o; of afamily of
questions { o}, is the question which consists in choosing one question «;
and to attribute to II;., «; the answer thus obtained. The trivial question
denoted | consists in measuring anything (or doing nothing) and answering
aways “yes.” A question « is said to be certain if when a physicist decides
to perform it, the answer “yes’ comes out with certainty. Finally, a question
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« is said to be stronger than a question B if we have that “« certain” implies
“B certain”. This preorder relation induces an equivaence relation. To each
equivalence class [a] there corresponds a property a of the system which is
said to be actual if « iscertain. The set & of equivalence classesisacomplete
lattice, the greatest lower bound of a family {a};., being the class defined
by the question II; ., «; and the maximal element being the class defined by
the trivial question I. The lattice & is called the property lattice. The state
of the system is the set of al actual properties. Two states € and &' are said
to be orthogonal, ¢ L &', if there exists a question « such that « is certain
when the system is in the state ¢ and o™ is certain when the system is in
the state ¢'. For a given state ¢, write p, := [({a € ¥; a € &}; then, by
definition, p, e eand e = [p,, |] :={a € &; p, < a}. If pisan atom of
&, then p is actual if and only if the state of the system is e, = [p, I]. If
one supposes that for each state ¢ of the system, (i) there exists a question
a, such that «, istrueif and only if the state of the system is orthogonal to
g, (i) p, is an atom of &, and (iii) every question on the physical system
is equivaent to a product of primitive questions, then & is atomistic and
orthocomplemented by a’ = ({[«,]; p. < &}, and & is orthoisomorphic? to
€©(Z, L), the lattice of biorthogonal subsets (At+ = A) of the set 2 of
possible states.

Further, a property a is called classical if for any state ¢, either a is
actual or a’ is actual. The set #(¥) of all classical properties of & is a
subcomplete, atomistic orthocomplemented (cao) lattice. The system is said
to be purely quantum if and only if Z(£) = {O, |1}. We will see later that
F(&£) is the center of &£ and so & is purely quantum if and only if & is
irreducible. Finaly & is orthoisomorphic to the Cartesian product of the
irreducible components of &£.

To describe evolution, one hasto remark that agiven evolution is nothing
more than part of an experimental project. Let Q, denote the family of all
guestions which can be performed on the system at a time t. Consider a
question o € Q; and denote by Py, () the question defined by “evolve the
system from time ty to time t; and perform «.” So, by definition of
Qi Pos(a) € Qy, and Py, defines an application from Q,, to Q. One can
check that &g, preserves the product and the equivaence relation, so that
®y, defines amap dbo: £y, - £y, which preserves the meet and sends O,
to Oy, If for a certain state p of the system at time t,, the system may
disappear during the evolution, then p O ¢y (I,) = Oy since for I, to be
certain, the system has to exist. Let py < ¢, (I1,) be the state of the system
a time to. Define {s19(pg) as the smallest actual property of the system at

2We call an orthoisomorphism a bijection between two cao lattices which preserves the join,
the meet, and the orthocomplementation.
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timet,, that is, Y10(po) = &y € Liy; Po < doi(ay)}. If for every state py <
boi(lyy), Y1o(pPo) is an atom of &£, then the final state of the system is
completely determined and the evolution issaid to be deterministic. Moreover,
the application yso: [Oyy, dou(l,)] — £, preserves the join and sends atoms
to atoms and O, to O,. We will call such amap amorphism. If {5, preserves
irreducible components, then the evolution of classical variables does not
depend on the actual quantum state. So, for a model of property lattice and
evolution given by a cao lattice and a morphism, it is important for the
physical interpretation that the morphism preserve irreducible components.
It is clear that not any endomorphism of a cao lattice preserves irreducible
components, as we will see on an example in Section 3.

We now briefly recall the construction of the model proposed by Aerts
for the property lattice of a physical system S constituted of two separated
subsystems S, and S,.

Two questions o and B are said to be testable together if and only if
there exists an experimenta project E(«, B) with four outcomes, labeled by
yy, yn, ny, and nn, such that o ~ Eyyyn, @™ ~ Eqynny B~ Epyny, @d B ~
Eyn.nn: Where, for example, E, , isthe question consisting in performing E(a,
B) and answering “yes’ if the result is yy or yn and “no” otherwise. Two
questions « and B which are testable together are said to be separated if and
only if, when for an arbitrary state p of the system there is a certain chance
to obtain an answer for a and another for B, then for this state of the system
there is a certain chance to obtain this combination for E(a, 8). Finally, the
systems S, and S; are said to be separated if and only if every question of
S, is separated from every question of S,. The model of Aertsis given by a
set Q of questions on al the system S. Q is the union of Q,, Q,, and all the
questions of the form E(a;, o) Wherea; € Qp and a, € Q,, closed relative
to the product of questions. From this, one can prove that the set of states
of Sisgivenby = = 3; X ¥, and that the orthogonality relation between
states is given by

(1,82 Lo (Mum2) = g1 Lmpore; Ly D

(Aerts, 1982, Theorems 19 and 21). One can aso prove that if S, and S,
satisfy the basic axioms mentioned above, then Sdescribed by Q also satisfies
these axioms, so that the property lattice &£ of Sis cao and

L= DO Fyi=CS1 X Sy Lo) @)

We can now turn to the mathematical part of this paper. For this purpose,
we need to introduce some convenient notations and to recall some results
about cao lattices.

Let & be a cao lattice. We denote X the set of atoms of &, and L the
binary relation on = induced by the orthocomplementation of £: p L q =
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p < q'. Then £ is orthoisomorphic to 6(Z, 1) and L is an orthogonality
relation, that is, L is symmetric, antireflexive, and separating, i.e., for every
pair p, g of atoms of &, there exists an atom k suchthat p L kand q £ k
or equivaently, every singleton of X is biorthogonal. Reciprocaly, if L is
an orthogonality relation on a set 2, then €(Z, L) is a cao lattice. For two
elements a and b of a cao lattice, we will writea O b = a U b if and only
if every atom under a O b is under a or under b. Finally, we denote by % ()
the cao lattice of subsets of ().

We will denote by %(&) the sub cao lattice of elements of & such that
at = a° the complementary set of a in X, and by () the set of atoms of
F(£). It is easy to verify that for every family {a};., of elements of £ and
for every a € %(¥) we havethat a; = (g Do) O (g Dat), & = Dyeolay O
o) and (G, &) OB = G, (& OB). From these relations it follows that &
is orthoisomorphic to the Cartesian product Il,.q [O, «], where [O, o] =
{a e &; a < o} and the orthocomplementation is the induced orthocomple-
mentation a8 = at Do (@7 = ((a* Oa) a9t = a). Z(£) is the center of
&: Indeed, let a € %(&£); then &£ =[O, o] X [0, at], and reciprocally, let
ae & and £, and &, be two cao lattices such that ¥ = ¥; X ¥, and a
corresponds to (I, O,); then a* corresponds to (O, I,); so at = aC In
consequence, purely guantum corresponds to irreducible. For an atom p of
&, we denote by #(p) the central cover of p, that is, #(p) = Ka € Q;
p<al.

For a cao lattice having the covering property, we have the following
property we will use frequently: let p and g be two atoms of &£; then #(p) =
%(q) = pOq # p U g. With the relations we gave before, it is easy to see
that if #(p) # #(qg), thenp O q = p U g. To show the converse, we first
have to remark that in a cao lattice having the covering property, we have
thaapOdg=puUuqgqld pLlLqgorp=g. Indeed, if p0q=p U q, then x
=(pUqg gt =pOgtandso O < x<p.If x=p,thenp < g* and
if x=0,then[pt Og*] Oqg = I, thais, | coversp! Og',sop =q. In
consequence, it remains to show that if #(p) = #(g) andp L q, thenp O
g # p U g. We write p ~ qif there exist a finite number of atoms z, .. .,
Z,suchthat p £ z, z X z,4, and z, £ g. We call note [p] the equivalence
class of p; then [p] € %(&£) and [p] = %(p) because if q ¢ [p], then g e
[p]*. Findly, therelation p 0 q # p U qistransitive: Indeed, consider three
atoms p, z, and g such that there exist r, different from p and z, and r,
different from zand g, withr, < pOzandr, < z0Oq. Writea=r, Or,
and x = (p Uq) Ua. By the covering property, p < q U a, which implies
that x # O. Moreover, if X = a, then z < p 0 q, otherwise x is an atom
different from p and g.

Finally, for any irreducible cao lattice having the covering property of
rank greater than or equal to 4, there exist a vector space V on afield [, an



Endomor phisms of the Separated Product of Lattices 2563

involution ¢ on K, and a Hermitian form ¢ on V such that £ = 6€(V/IK*,
1) where 1 isinduced by ¢ (Maeda and Maeda, 1970; Piron, 1964). If fis
a nontrivial endomorphism of &£, that is, a join-preserving map, sending
atoms to atoms such that the rank of Im(f) is greater than or equal to 3,
then f is induced by a semilinear map g on V (Faure and Frolicher, 1993,
Definition 4.1.1 and Proposition 4.1.2; Faure and Frolicher, 1994, Theorem
5.1.5). Moreover, if & is orthomodular, if K = R, C, or H, and if the
involution is the usua one, then V is a Hilbert space. In this case, if g is
quasilinear and if f(p) L f(q) impliesp L g for any atoms p and g, then g
is unitary or antiunitary (Faure et al., 1995, Theorem 4.2).

2. THE SEPARATED PRODUCT

The separated product can be defined in the same way asin (1) and (2)
for an arbitrary family {£.} ... Of cao lattices by

@ ga = (G(H Ea, J.@) (3)

aew QAEW

where
PLlepge Oa e wsuchthat p, L, Qe

It is easy to check that L4 is separating, and moreover an orthogonality
relation. In consequence, O, .., <. IS aso a cao lattice.

The only result concerning the separated product is due to Aerts: if the
separated product ® £, has the covering property or if it is orthomodular,
then at most one &£, is not equal to its center (Aerts, 1982, Theorem 30, for
the case #» = 2). To prove this, one first has to remark that in a cao lattice
& having the covering property or which is orthomodular, we have the
following relation: p0g=p U gOd p L gorp = g We have aready
proved this when & has the covering property. If & is orthomodular, then
[((pOqg) Ogt]Oq=p0Oq,sothatif x:= (pOqg) Ogt = O, thenp g = q.

Finally, if, for example £, # %#(¥£,), then there exist two atoms p and
gof &£, suchthatp £, q. Let B # o, and let r, s be two atoms of &£;. Let
x and y be atoms of the separated product such that x, = p, X3 =1, Y, = Q,
Yo =S andx, =y, fora#vy#p.Thenplyqg=pUq(Lemma 1.b)
and so, if the separated product has the covering property or if it is orthomodu-
lar, p Ly q, that is, r Lg s, which shows that Z(¥g) = £g.

The results that follow are original; they cannot be founded in Aerts
(1982). Before proving the theorems announced in the abstract, we need two
preliminary lemmas and a definition we will use throughout the paper:
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Definition 1. Let {£.}., be a family of cao lattices. (a) For any
nonempty subset B, of =, we define o(B,) C Il,.,, 2, by o(B,)s = 2 for
B # « and o(B,), = B,. Moreover, we put o(0) = 0.

(b) Let p and g be two atoms of the separated product. We define C(p, Q)
C MMycw 2o by C(P, Q)a = Po L G-

From now on, we will drop the subscripts ® and a when no confusion
can occur.

Lemma 1. Let {£.}..., be afamily of cao lattices and a and b elements
of Il,., £, such that a, # O # b,, Do € w. We have:
@ace a@ Lo

(p)alb=auUbU,Yy, whereys = a, Ob, and y§ = ag O by for
B # a.

(c) We note x; = a, and x3 = by for B # «. Suppose that a, < b,,
Oa € o. Then O, X* = UgeoX®™.

(d) Suppose that o is finite. Let x* = a, ¥ = by, and x2 = g for i =
2,x<=Dpifi =k—landx=aifi =k Then G, XX = Uy, Z, Where
X=al0b,Z2=aifi=k+1adzZ=Dbifi =k — 1

(e) Let {p?; B e w} be aset of atoms of D, £, such that pf #
pY, Oa, B,y € w. Then Og,, pP = Upc,, PP

(f) Let p be an atom of @, ., ¥, and {¢®; B € o} be a set of atoms
such that for every B, #{«a; o # p,} = #w. Then p O (Gs.,, o) = O.

Proof. (a) By definition (3) of L, we have that at = U,.,, 0(at). So,
1
att = (u 0(6\&)) = N o@") =a

(b) Let usfirst consider aset X C Il ., &,. Then, in the same way as
before, we find

VX= {ﬂ U o(xal)}L = { U N o(Xﬁx))}L

XxeX aew hewX XeX

SOOI Y
hewX acim(h) Xehil((x)

= U N oA Emm)

0" -Im() hew

= U % @

g:(x)xa Im(-)

For part (b), we have X = {a, b}. As a consequence, if h is a constant
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fUnCtion, then hil(g(h))g(h) = {ag(h), bﬁ(h)} and otherwiseh™?1 (g(h))i(h) is equal
t0 @y OF by Thus, for any a € w, X isequal to a,, b, a, Ob,, or a, Ob,.

If, for example, % = a, for a certain «, then x§ < ag, OB # «, since
if x§ = a,, &) = h(a) for every function h € w*, such that h(b) = «.

Finally, if x§ = a, Ob,, then x§ = a 0 by because &(h) # « for every
nonconstant function whose image contains a.

(c) Inthiscase, X = {x*; a € w}. Because of the hypothesis a, < b,,
O{h~*(&(h))¢n} = b, for every constant function h. In consequence, x¢ < b,
0&. Moreover, since w* contains the identity, there exists a such that x* < x©.

(d) Inthiscase, X = Uy, X% Let h € »® be a step constant function,
that is, for any k € Im(h), h~%(K), is equal to a, or by. Denote k, those k in
Im(h) such that h~(k), = a, and similary k. If Im(h) contains no k,, then
Im(h) is not bounded. Otherwise, there exist k, and k, such that k, < k.

Leti € w and h be a step constant function. If there exists k, < i in
Im(h), put £&(h) = k,, otherwise put £(h) = k, with k, > i. For any other
function h, choose E(h) such that D{ h_l(g(h))g(h)} = ag(h) O bg(h). Then xt = Z.

Finally, let i bethe smallest element in w such that x¢ <« b;. Then &(h) =
h(1) for every function h of the type h(x) =i, Ok > i and h(x) = j > i,
Ok < i. Asaresult, X < a,, Ok > i, and s0 Xt < Z.

(e) This result follows directly from the fact that for any nonconstant
function g € ®, there exists a hijection h™! of » such that g(a) # h (),
Oa e w.

(f) If xt is an atom, then xt # p since by hypothesis, there exists
injective functions h e w® such that gRg) # Pre), OB € w. Thus, for p to
bein Oy, g%, there must exist £ such that x§ is of rank at least 2 for a set
R of « such that #R = #w. Thisisimpossible because w® contains injective
functions from o to R. [ ]

Part (c) of Lemma 1 will be used in the proof of Theorem 3, part (d)
in Remark 2, and parts (e) and (f) in Remark 1.

Lemma 2. Let {&£,} .., be afamily of cao lattices having the covering
property. Denote by T thetopology onI1, ., =, which admitsthe biorthogonal
subsets as a subbasis of closed sets. Let p and q be two atoms of ®__, &£..
Suppose that for any o, C(p, q), contains either only one atom or an infinity.
Then C(p, q) is a connected set for the topology .

Proof. Let f be a closed set of 7. Then, by definition of =, f=
N, U, XY, where XI" € Q,_,, &,.

We write C for C(p, g). The lemma is a direct consequence of the
following remark: for any biorthogonal X < C different from C, their exists
an atom p < C such that X < U, ., 0(p,) O C. Indeed, we know that X is
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of the form (4) and since every &, has the covering property, ({h ().} is
an atom or C,. If there exists no step constant function in w*, that is, if for
any h, there exists a such that ({h™*! (a),} = C,, then X = C. Let h be a
step constant function. Then x¢ < o(Ck(h)), DE.

Thus, for any closed sets f and f’ of 7, different from C and 9, there
exists a finite set R of atoms of C such that C\R C (f¢ N f'¢) N C. ]

Remark 1. Suppose that w is finite (write | = w) and that for any k e
o and any pair ry, s, of atoms of C, there exists an injective or constant
function from [0, 1] to Cy such that ¢ (0) = r, and ¢ (1) = s. Then C is
connected by arcs. Indeed, let r and s be two atoms of C. Define ¢ from
[0, 1] to C by c(t) = (cu(t), cu(t), .. .). Let x be a biorthogonal subset of C.
Since | is finite, x contains at most a finite set of atoms { p; k € |} such
that pk # pl, 0, # | and k, otherwise, there is no step constant function in
I'and x = C. As aconsequence, ¢ %(x) is afinite set of points, which shows,
by definition of 1, that ¢ is continuous.

But if o isinfinite and C, is not an atom [ «, then C is not connected
by arcs. First, remark that the argument for finite w does not work in this
case because for every noncompact converging sequence t,,, ¢ (O, c(t,)) is
not closed since by Lemma 1(e), [, c(t,)) = U,c(t,)-

Consgder two atomsr and sof Csuchthatr, # s, 0 o. Letc: [0, 1] —
Cwithc(0) =randc(l) = sand Q := {t € [0, 1]; Ha; c(t)y * S} #
#n} . Let ty be the greatest lower bound of Q). If t; ¢ (), consider a sequence
t, —» towitht, € Q. Then ¢ ([, c(t,)) is not closed, since by Lemma 1(f),
O, c(t) Oc(ty) = O. If t; € O, consider a sequence t,, — to with t, < t,.
Thus, ¢ is not continuous.

We now state or first result concerning the center of the separated
product. For the proof of part (b) of Theorem 1, we develop a new genera
argument involving the topology defined in Lemma 2.

Theorem 1. Let {£,}... be afamily of cao lattices.

() Suppose that  is finite. Then the separated product ®;-, ¥, is
irreducible if and only if &; isirreducible for al i. Moreover, we have that
F(Dizn &) = P(Ili<p ).

(b) Suppose that for any a € w, &, has the covering property and the
join of every pair of atoms of &, having the same central cover contains an
infinity of atoms. Then the result of part (a) is true for an arbitrary family.

Proof. (a) This proof is only based on the definition (1) of Lg. Wefirst
prove that £, ® &, isirreducible if and only if £, and &, are irreducible.
Since the separated product is associative, the same result is true for any
finite family of cao lattices.

First, remark that a cao lattice is irreducible if and only if for any
nonempty subset A C X different from =, A* is dtrictly include in AS, the
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complementary set of A, that is, if and only if At¢ N A® # 0. Indeed, if
At = A% thenAC At = AL C A® = A, s0 A = A+t and At = A%, which
isimpossible in an irreducible cao lattice.

Suppose, for example, that &, is reducible; then there exists A C 2,
such that At = A® = 3,\A. So, by definition, (A, 2,)* = (AL, 2,) = (AS
2,) = 21 X 2,\(A, 2,), which isimpossible if £, ® &, isirreducible.

Suppose now that &, and &, are irreducible. Let A C 2, X 2, a
nonempty set different from =, X 2,; then we have to show that X := A° N
ALc # 0. By definition,

At = ﬂ [(p*, 22) U (24, 9Y)]

(p,a)eA
A=) Upe2)NELa9= | (P99
(p,a)eA (p,a)eA

Forasubset SC A writeS;:={p e Z|(p,Z) NS# P andS,:={q e
So|(S, @) NS # B}, Then,

A= I UELO] =AU ELA) | (S (A9
(p.a)eA Se®*(A)
where P*(A) = P(A)\{A, 0} and P(A) is the set of subsets of A. So,

X=AnAC= | ] {(p*°NALQ9 U (p'gcn A
(P.a)eA
(p*°N S g™ N (A\93)}
SeP*(A)

If, for example, there exists p € A, such that p1¢ N A§ # 0, then X #
9 and the proof is finished. In consequence, we will suppose that Op e A,
and g € Ay, pt¢ C A and g*¢ C A,. Thisimplies

A = UDCUPMCAl

peA1L peA1L
C lc
oA=L p“:(ﬂ pi) =(U p) = Af°
peA1L peA1L peAr

and similarly for A,. Since by hypothesis, &, and &, areirreducible, it follows
thm A]_ = El and A2 = 22.

Let pp € Ar. We write by, 1= {q € =,/(po, ) € A} (Fig. 1). We can
suppose that by, # =, because A # X; X Z,. There exists ¢y € by, such
that gg¢ Z by,. Indeed, suppose that q*¢ C by, for every q € by,. Then,
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Fig. 1. Proof of Theorem 1, part (a).

lc
pr=UqCUql°Cbpo S0 bpoz(U q) = by’

gebp, gebp, gebp,

which is impossible because &£, is irreducible. Let S:= A\(po, byy); then
Po € Po° N & and (A\S), = by, s0 gs° N (A\S)S = g° N bf, # B, which
shows that X # 0.
The remainder of the proof is an easy consequence. Let p be an atom
of £ := Qi=n L. Write z(p): i - %(p;). We have to show that #(p) = z(p).
We first verify that z(p) € (). From Lemma 1(a), z(p) € < and by
definition of L,

2p) = | o&(m)*) = | o@(p)9) = Z\«(p)

i=n i=n

Finally, since p < %(p) Oz(p), we have that #(p) < z(p), and so, since
[O, Zp)] = Bi=n [O, Z(p)], £(p) = Zp).

(b) The only thing we need to prove is that if £, are irreducible, then
the separated product & := Oy, L. is aso irreducible. For the remainder
it is easy to check that the argument of part () applies aso for an arbi-
trary family.

Let 7 bethetopology on = defined in Lemma 2: Since &, areirreducible,
by Lemma 2, X is a connected set of 7.

To conclude, it remains to remark that in a cao lattice, if (£, 7) is
connected, then & isirreducible since every element of Z(£) is clopen. ]

The remainder of this section is devoted to some examples of sepa-
rated products.

Example 1. Let usillustrate Theorem 1 by a trivial example: Let £ be
acao lattice. We first remark that £ = {5 ® £. So, by Theorem 1, ?(Q)) ®
& is orthoisomorphic to the Cartesian product IT &£.

Q
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Example 2. Consider & = P(C?® P(C?), where P(C?) is the lattice of
subspaces of C2. We denote by X the set of raysof C% 1 = = X =; py, Oy,
1, P2, Oz, M2, X, @nd y elements of =; and p = (py, P2), 9 = (G, ), and r =
(ry, rp,) are three atoms of <. An easy calculation gives [see Lemma 1(b)]

puUq ?f p1 # g and p, # O
plg=q(p2) if pp=cqandp;#q
. p) if pp#qandp, =0
. (pl, E) If rl = pl
rO(py 2) = {(pf, rs)*  otherwise

| if pr#Fr#qandp, #r,# @
_|(pta)t if nFqadra=0q
rD('OUQ){(qf,r%)L it r,#padr,=np,

So, apart from 0, 1, and the atoms, & contains four types of elements. (py, p.)
U (G, @) With py # g, and p; # 0z, (P1, 2), (2, p2), and finaly
(pw P2)* = (pt, 2) U (2, pz). Thisis summarized in Fig. 2.

Moreover, & neither has the covering property nor it is orthomodular.
It is a consequence of the Aerts theorem and it can be verified explicitly.
For example, let us put a := (py, P2) U (G, O2) With p1 # G, P2 # Oz, P
# 01, and p, # gz, b= (py, ) U (Z, o), and r = (ry, r5) withp; # 1,
# ¢ and p, # r; # Q. Then, a* = (pi, gz) U (a1, pz), soa* Ob=0
and in consequence, a O (at O b) = a # b. Moreover, r Oa = |, which
does not cover a.

Example 3. Let ¥, and %, be two Hilbert spaces over C and P(#; ®
dt,) be the lattice of closed subspaces of the tensor product of ¥, and #C..
We denote the orthogonality relation in 9¢; & ¥, induced by the scalar
product by 1, Let p: P(#)DP(H,) - P(#, & #,) be defined by

p@:={p®q(p g <a}) = atete

Let 2 be the set of product vectors in 3, ® #, and A a subset of 2.
Since A'c = A'® N 3, it is easy to check that w is an injective order-
preserving map. Indeed, if w(a) = w(b), then a‘t® = b'® and so at® =
b1, that is, a = b since a and b are biorthogonal.

Moreover, the image of . contains the set C of all closed subspaces V
such that V and V+® are spanned by product vectors, and on ! (C),
preserves aso the orthocomplementation. Indeed, define A = V N X and
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L I,
e ~ @ //
P {1 1 D2 a2 T2 =
RN /
o (@)

..... N D
(phpZ) .

Fig. 2. The lattice as seen from above. The structure in dashed lines repeats for every box
(o, B), (o, ¥), (B, B) (8 ¥), (@, BH)*, (t, yH):, oo

B =V NZ. Then A*® C V1® and so A*® C B and similarly B*® C A.
Moreover, B C At® and A C B2, Asaconseguence, A and B are biorthogonal
and At® = B.

In Example 2, we can prove that dim(u(x*2)) = dim(w(x)1®), Ox e
P(C? @® P(C?), that is, that Im(p) = C. So, since P (C? ® C?) isorthomodular
and P(C?) @ P(C?) is not, the application p. preserves neither the meet nor
the join. On can verify this explicitly: Remark that w(b) = {p. ® gp, p1 ®
P2 Pt ® Qo). Toseethat p(b) O (@t%) # w (b Oat®), it sufficesto show
that w(b) O w(@)*® # O, in other words, that there exist two numbers o and
B such that

(PL® P2 apr @ G + PP O P + P D) =0
(W@ apr @G+ BP1 @ P, + Pt @) =0
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that is, such that
[[ARYR | palAl Pl ) _ 0
o0z, Py (O, PXCR, P2)) \B (O, Pl

Indeed, the determinant [l {qu, POI[(P2 a* — lIpalfllaal] is different
from O since p, # @, and q; # pr.

Example 4. Finally, we give some examples of cao lattices which are
not the separated product of two sublattices. First, by the Aerts theorem and
Theorem 1, irreducible cao lattices which are orthomodular or have the
covering property are never orthoisomorphic to the separated product of
nontrivial cao lattices. But there are also irreducible cao lattices which are
not orthomodular, which do not have the covering property, and are not
isomorphic to the separated product of nontrivial cao lattices. Indeed, let
%(S Lo be the lattice of biorthogonal subsets of an infinite-dimensional,
noncomplete pre-Hilbertian space over C and let & be the cao lattice of Fig.
3. In the separated product of nontrivial cao lattices there always exist two
elements a and b different from O and | such that a < b, b <« a, and a O
b= a U b[Lemma 1(b)]. Thisis clearly not the case in .

3. JOIN-PRESERVING MAPS

This section is devoted to join-preserving maps between separated prod-
ucts. We recall that we call morphism a join-preserving map between two
cao lattices, sending atoms to atoms and O to O, defined on a segment D =
[O, M] called the domain.

Wefirst give acharacterization of morphismsthat wewill use frequently:
Let £, and £, be two cao lattices and f a morphism from £, to &, with
doman D = [O, M]. Let g: M C 25 - 2, be the restriction of f to the
atoms of D. Then, the inverse image by g of a biorthogonal subset of 2, is
abiorthogonal subset of =,; more precisely, (g~ 1(A*))*+ = g Y(A*) for any
subset A C ;. Moreover, f(a) = g(a)**, Oa < M. Indeed, let p be an atom

Fig. 3. Example 4.
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of ¥, such that p e (g~ Y(A*))*+; then p is in the domain of f and since f
preserves the join, we have that g(p) = f(p) < Dyeq2at) f(@) < A

Reciprocally, let £, and &, be two cao lattices, M € $oand g: M -
>, such that the inverseimage by g of any biorthogonal subset is abiorthogo-
nal subset; then f: [O, M] — &£, defined by f(a) := g(a)‘* is a morphism.
First, f(O) = O. Let {@g}p.n be afamily of elements of [O, M]; then by
definition, (s f(ag) < f(Oscn ag). Moreover, since the inverse image by
g of a biorthogona subset is a biorthogonal subset, Cs.n a3 < g X (Csen
f(ag)) and s0 g(Chcn @) C Dsen f(ag) and f(Lsen ap) < Dhea F(ap)-

Finally, we remark that a bijective morphism f: D - &£, is an isomor-
phism from D to &£, that is, a bijection which preserves the join and the
meet. Indeed, since f is injective and preserves the join,

f(a) < f(b) - f(a) Of(b) = f(b)
- f(aOb) = f(b)
~alb=bea<b

which shows that f(a) < f(b) implies a < b. In consequence, if g is an
atom such that g = f(X) < f(a) Of(b), thenx <aandx < b,soq < f(a
Ob). Moreover, sincef preservesthe order, we havethat f (a (Ob) < f (a) Of (b).

We remark that our definition of morphism differs from that in Moore
(1995), where morphisms are partialy defined maps g from 2 \%, to =,
such that #, U g~* (A*++) isabiorthogonal for al A C ;. Following Moore
(1995), we call Prop’ the category of cao lattices with our definition of
morphisms. Then, it is easy to check that the coproduct in Prop’ is the
Cartesian product of cao lattices (I1, ¥£,, f.) with (f,(a)). = a and (f.(a))s
= Ofor B # «. But the separated product is not the product in this category
(if indeed there is one).

This can be seen in two steps. First, let £, and &£, be two elements of
Prop’ and suppose that there exists a product P. Denote f; and f, the projection
maps and h: 2p - 2; X X, the map defined by h(p) = (fi(p), f2(p)). Then
h is injective since the diagram

£,

f AN}
O]O <><>



Endomor phisms of the Separated Product of Lattices 2573

must admit a unique factorization, where g; is the morphism sending | to
f,(p). Further, h is surjective since for any atom (py, po) € 21 X 2, the
preceding diagram must admit a factorization when g; are the morphisms
sending | to p.

Second, let p # g betwo atoms of acao lattice £. Let f be the morphism
such that the following diagram commutes:

_f 9
§><>\. {<j§
£
Then fi(f(p) = p, f(f(p) = p, f1(f(d) = q, and f5(f(g)) = q. Suppose
that there exists an atom z different from p and g under p 0 g. Then f(p) #
f(2) # f(g) and since f preserves the join, f(2) < f(p) Of(q), which shows
by Lemma 1(b) that P # £ @ & (take for example &£ = £,).

We now return to the purpose of the paper. For this section, we also
need a preliminary lemma:

& <&
P

Lemma 3. Consider a family {£o.}oce U &1 Of cao lattices and a
morphism f from £ := Oy e, Loo INt0 £1. Let a € . Suppose that Ly,
has the covering property. Let p and q be atoms of &£, in the domain of f
such that p; = gg, 0B # «, and such that p, and g, have the same central
cover. Denote respectively by x and y the images by f of p and q.

@Ifx#ythenxOy#xUYV.

(b) Suppose, moreover, that £1 = Oy ey F10, Where £, are cao lattices.
Then there exists at most one a € o' such that X, # VY,.

Proof. (a) Suppose that x Oy = x U y. Since £, has the covering
property and p, and g, have the same central cover, there exist an atom r,
different from p, and q,, such that r, < p, O q,. Let r be the atom of &£,
defined by rg = pg, OB # o. So, by Lemma 1(b), r is in the domain of f
and since f preserves the join, f(r) = x or f(r) = y. Suppose, for example,
that f(r) = x. Then, since by the covering property and Lemma 1(b), p O
g= p Or, we have

xUy=x0y=1f(p)Uf(q) =f(pOqg =f(pOr) =f(p) Of(r) =x

which shows that x = .
(b) It is an immediate consequence of part (a) and Lemma 1(b). [ ]
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When the evolution of aphysical system can be described by an endomor-
phism f of the property lattice &, the fact that f preserves the irreducible
components of £ means that the evolution of classical variables does not
depend on the quantum variables. When & has the covering property, this
is easily verified since two atoms have the same central cover if and only if
pUqg#pUaq

Itisclear that in the general case, morphismsdo not necesseraly preserve
irreducible components, as we can see in the following example:

Example 5. Let £ = €(Z,, L), wherektn:={k+2,...,k+n —
2l foon=4andkir:={k+ 1, ..., k+n—-1} for2=n= 3. ltiseasy
to verify that 1, is an orthogonality relation. Further, let g: Zs — Z, be the
map sending 0 to 0 and 1 to 1. It easy to check that the inverse image by g
of any biorthogonal subset is biorthogonal, that is, that g defines a morphism
fi &5 - &L, with domain M = {0, 1}. Remark that this is the smallest
example since, as is easy to prove, the smallest irreducible cao lattice is £.,.
Moreover, there are only two irreducible cao lattices with five atoms: &5 and
the same lattice as in Fig. 3, but with &3 instead of (S L1g). The smallest
example with a morphism with maximal domain, that is, with D = [O, I] is
f: %5 - &, with f sending atoms 0, 1, and 2 on atom 0 and atoms 3, 4, and
5 on atom 1.

In our case, that is, when & = ®,., Lo, endomorphisms preserve
irreducible components if, among others, the following hypothesis on the
domain D = [O, M] is verified:

Hw1 Atomspand gin D having the same central cover are connected,
that is:

Definition 2. Let {Z£,} .., be a family of cao lattices, D = [O, M] be
a segment of B, ¥, and p and q be two atoms of D having the same
central cover.

(a) If w is finite, we say that p and q are connected if there exists a
finite set of atoms r%, --- r" in D N ¥(p) such that r° = p, " = g and for
any k < n there exists at most one j such that rf # rf%.

(b) If w isnot finite, we say that p and g are connected if C(p, g) € D.

Let us give an example: Suppose that #» = 2; then by Theorem 1(a),
p and q are connected, for example, if (g;, po) € D. Remark that Hypothesis
Hwy is trividly satisfied if the domain of the morphism is maximal, that is,
For the proof of part (b) of Theorem 2, we develop a new genera
argument in the category Prop’ involving the topology defined in Lemma 2.
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Theorem 2. Consider a family {£Lo}ace U £, Of cao lattices and a
morphism f from £y : = Oy Loo iNto £1. Suppose that Hypothesis Hy, is
satisfied and that £, has the covering property Oa.

(a) If w isfinite, then for every atom p of D we have that f (%(p) O M)
< Z(f(p)).

(b) If for any o € w, the join of every pair of atoms of £, having the
same central cover contains an infinity of atoms, then the result of part (a)
is true for an arbitrary family.

Proof. (8 Letp = (py, ..., pn) @dqg = (qy ..., g,) betwo atomsin
the domain of f having the same centra cover. First, by Theorem 1(a) we
know that Z(p;) = %(q;), O, = n. We write x = f(p) and y = f(q).

If there exists only one j such that p, # ¢, then the theorem is a direct
consequence of Lemma 3(a) since if #(x) # %(y), thenx Oy = x U V.

Otherwise, consider the atoms defined in Hypothesis Hy;. Then by
hypothesis, %#(p) = Z(r}) = --- = Z(r" ) = %(qg) and we have that

Z(T(p) = Z(F(r), L(F(rY) = 2(F (), ...
Z(Eh) = Z£(F (@)

(b) Let &£, and &£, be two cao lattices and f be a morphism from £,
into £, with domain D = [O, M] and g its restriction to the atoms of D.

As we have seen, the inverse image by g of any biorthogonal subset of
3, is a biorthogonal subset. In consequence, g is a continuous application
from (M, 7¢) into (X4, 71), where 7; is the topology defined in Lemma 2. For
this topology, elements of %(£,) are clopen and, thus, connected sets are
contained in atoms of %(¥,). Since the image by a continuous application
of a connected set is a connected set, to prove the theorem it suffices, to
show that if two atoms p and g of D have the same central cover, there exists
a connected set 6 containing them and contained in the domain M.

For our case, by Lemma 2 and Hypothesis Hy;, we can put € =

C(p,q). m

Remark 2. The argument used in case (b) works of course also for a
finite family of cao lattices. By hypothesis Hy,; and lemma 1(d), it suffices
to put € G—o...or* = U—o...nZ". Indeed, € < M and 6 isthe union of connected
sets 7z, with z, Nz, # 0, that is, € is a connected set. Remark, that if w
is infinite countable, first € is aso connected but does not contains q if
O« = px only for afinite set of k, and second that if g 06 = O, € U qis
not connected.

Corollary 1. Suppose moreover that £, = Oyecy L1o0 Where £, are
cao lattices having the covering property and that f is bijective.
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(@) In both cases of Theorem 2, if £, satisfies the same hypotheses as
& and if the domain of f is maximal, that is, if D = £, then f(%(p)) =
%(f(p)) for every atom p of L.

(b) If for every a € w thejoin of any pair of atoms of &, (where k =
0 or 1) having the same central cover contains an infinity of atoms, then
f(#(p) OM) = %(f(p)) for every atom p of D.

Proof. Part (a) iseasy. For part (b), supposethat f (%(p) OM) # %(f (p)).
Since f is surjective, there exists a € D such that f(a) = Z(f(p)). Then,
a= U,.q,a0y and in consequence, since f is injective, Z(f(p)) =
L, .0, f(@ Ov), which is impossible, because by Lemma 2, Z(f(p)) is a
connected set. ]

We now turn to Theorem 3. We need some more notations. Let {£u}ic
and { £}, be two finite families of cao lattices and f a morphism from £,
= B Ly into £y := Oicy £y with domain D = [O, M]. For an atom p
of D, k € |, and r, an atom of £, we write

xK(p) := ii\ko(pi) OMm

M(p) 1= PX(P), M= | ) Md(@) ()

qeD

where P;: I, ., 2o - 2 isthe natural projection and g are atoms. We remark
that M,(p) is a nonempty biorthogonal subset [Lemma 1(a)], but that in
general M is not biorthogonal. We will need one more hypotheses on the
domain of f. For k e | we have:

HY,, For atomsp # qin D such that p; # q; only for onei € I, X, :=
M(p) OM(q) # O, and if f(xX(p)) and f(x*(q)) are not atoms,
then f (y(p)) and f(y*(q)) are not atoms, where, for example
Yi(p) = X and y< = p; fori # k.

We remark that this hypothesis is aso trivially satisfied for any k e |
if the domain is maximal, since in this case M(p) = Zq. Moreover, if
#l = 2 anf if £y are irreducible, it easy to see that this hypothesis implies
that atoms in D are connected.

Theorem 3. Let { Lo} aco aNd { L1} o b two families of irreducible
cao lattices having the covering property, o abijection of w, { f,} ..., afamily
of morphisms from £, into %, with domain D, = [O, M,], and f a
morphism from £y = Oy e Loo IO L1 = Byey L1o With domain D =
[O, M].
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(@) The application I, ., fo: Lo - 0(£1) = Oyecw L0 defined by

(H fa><a> = VP

axew

where p are atoms, is a morphism, bijective if and only if f, are bijective.

(b) Suppose that  is finite and write | = w. If the Hypotheses HY,, and
Hy, are satisfied for every k e |, and if f(M) is not trivial in the sense that
forany i € | and for any atom p, € &£, f(M) is not contained in o( p;), then
there exist a bijection o of | and a family of join-preserving maps sending
atoms to atoms { fi}i., from £ into &4, defined only on the subset M; of
atoms of 2 defined in (5) (which are not necessary biorthogonal), such that
f=o"to (Il ).

As a consequence, if the subsets M; are biorthogonal, then f; are morph-
isms, so in particular if D = &£,

Proof. (a) We call g; the restriction of f; to atoms. For an atom p of ¥,
we write g(p) := {gi(p)}ici- Now, g(p) is an atom of o(¥£,) and as we
remarked at the beginning of this section, it suffices to show that the inverse
image by g of any biorthogonal subset a of (=) := 11, 2, isabiorthogo-
nal subset of :

g '@ = gl( ﬂL pL) =N (91 (U O(Déa))))

p<a p<at il

= ﬂ [U gl(o(p;(i)))}

p<at -~ i€l
where p are atoms and by definition of o(---),

g 1(0(Ps@))i = G (Psaiy) g o(Psi))i = 9 (1)

Since f' is a morphism and g (psg) < 9 *(C10@) = M, by Lemma 1(c),
the elements between brackets are biorthogonal subsets.

Finally, we only verify that if f; are bijective, then f ;= II;, f; is also
bijective, the other implication is easy to show.

First f is bijective on the atoms, so b = f(g~*(b)) for every b € o(%y),
and thus f is surjective.

To show that f isinjective, it suffices to see that g~%(f(a)) = a, that is,
that g~ %(f(a)) < a, for every a € ¥,. By (4), we know that

all = ﬂ U O(hfl(a)J_J_)

hew? aclm(h)
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Moreover,

(ﬂ Uo(fa<pa)L)) =(U N o(ga(hl(a))ﬂ)

p<a aew hew? aelm(h)

f(a)

N U ofuh ')

hew? aslm(h)

since f, preserves the join.

Asaresult, if g(p) < f(a), then for al h € »? there exist @« € o such
that g.(p.) € f(h 1 (a)*+), which shows, since f, is a bijective morphism,
that p, € h™Y(a)*+, that is, that g(p) < f(a) impliesp < a.

(b) The proof of this part is divided into four steps:

Sep 1. Let p be an atom of £, in the domain D (Fig. 4.). Then for any
k € I, there exist ji(p) € | such that P,(f(x(p))) isan atom for all | # j.(p)
[for notations, see (5)]. Indeed, let g, be an atom of £y in M(p). Let q be
the atom such that g; = p;, 0; # k. Suppose that f(q) # f(p). By Lemma
3(b) we know that there exists only onej e | such that P;(f(q)) # P;(f(p)).
Denote this|j by j(p). Suppose now that there exist an atom r in M,(p) and
I # ji(p) such that P,(f(r)) # P(f(p)), wherer is the atom such that r; =
pi, Oi # k. So by Lemma 3(b), P, p(f(r)) = Pyu(f(p) and since
Pio(F(@) # Py (f(p)), Pi(f(@) = P(f(p)), and so P(f(r)) # Pi(f(q))
and Py, (f(r)) # Py (f(a)), which is impossible because of Lemma 3(b).

Sep 2. Next, for any k e |, we show that there exists j e | such that
forany p € D and any | # j, P(f(X{(p))) is an atom of £, in other words
that for al k e I, one can always choose the function j,(-) such that j(p) =
j@) Op, q € D (Fig. 5).

Letl e Jand pand qbeatomsinD suchthat p; = g, 0; # | and p, #
g, and let k # |. Suppose that f (x{(p)) and f(x(q)) are not atoms and that
ipP) # jk(g) [for notations, see (5)].

o B(f()

gk i
P P ) (f()):
’ M;,(p) _—> Piu( (F (1) Fi(£(0) I®
Tk :

l

)
kol
S

Fig. 4. Proof of Theorem 3(b), Step 1.
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TPjh<q>(f(y’“(p)>)

/] Tk
P (f(4*()))
S,

P (f (4" ®)) lpjk(q)(f(yk(q»)

l 'k Ejk (p) Ejk (9)
Fig. 5. Proof of Theorem 3(b), Step 2.

-0 --O-----@----
8 &

i
)
s

Then, we have that
P (f(Y(@) < Py (f(Y()) (6)
Pua(F(Y(R) < Pia(f(Y(a))
(for notations, see Hypothesis Hy,). Indeed, suppose, for example, that

P (F (YD) 0P (f(¥(p)) = O @)

By Hypothesis Hfy,, there exist two atoms r, # s € Xy := My(p) O My(0)
such that f(s%) # f(r9), wherer =s'=q, Ui # k, ri=r, and §! = s..
But, (7) ImplleS that ij(q) (f (rq)) = ij(q)(f(rp)) and P]k(q)(f(sq)) =
Pi@(f (). As a consequence, since P;,q(f(y¥(p))) is an atom, (f(g) =
f(r%), which is a contradiction.

By (6) and Lemma 1(b), since f preserves the join, we have that

F(YS(P) OyH(@) = (Y (p) U f(¥(a)) (8)

since for any m different from ji(q) and ji(p), Pr(f(YX(P)) = Pu(f(¥4(a))).
But since &£ has the covering property, there exist an atom t; different from
pr and g such that t; < p, O . Define yX(t) by y4(t), = t; and yX(t); = y¥(p);
for j # |. Then yX(t) < yX(p) O y¥(g). So yX(t) isin D and by (8), f(yX(t)) <
f(y(p)) U f(y¥(Q)). Since there exists only onem e | such that P, f (y(t)))

is not an atom, f(yX(t)) < f(yX(p)) or f(yX(t)) < f(y* (q)). Suppose that f(y*
(1)) < f(y(p)). Then, by the covering property and by Lemma 1(b) we have

that y¥(t) O y4(p) = yX(p) O yXq), that is, since f preserves the join, f(y<(q))
< f(y¥(p)), which is impossible because of Hypothesis Hf;,; f(y¥()) is not
an atom.

We have shown that for al k € 1, j/(p) = j(a), Op, g € D, such that
pi = q, O # j, for agivenj e |I. Moreover, the same result for arbitrary
atoms p and g in D follows since by hypothesis they are connected. As a
consequence, we can define j as ji(p) for an arbitrary atom p in D.
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Sep 3. We now show that if k # |, then j, # j;, in other words, since
is | isfinite, that o: k — ji is a permutation of I.

Let k # |, and suppose that j, = ji; then I\a(I) # 0. Let m € I\o(l).
Then P, o f is constant, which contradicts the hypothesis on the image of f.
Indeed, let p and g be atomsin D and i € | such that p, = qx, Ok # i. Then,
since j; # m, by Step 1, P(f(p)) = Pu(f(d)).

Sep 4. Let p, € M [for notation, see (5)]. Let g be an atom in D such
that g« = px. We define fy as

fil P := Pogo(f(a) with g e D and g = p«

We now have to check that this definition is independent of the choice of g.
Let r be an atom of D such that r, = p, and r; different from q; only for i =
j. So g and r are in x/(g) and since we have shown in Step 3 that o is a
permutation, we know that P, f(x)(q)) is an atom, which shows that P,

(f(@) = Pog(f(r)). =

Remark 3. In the general case where the lattices &;; are reducible, the
applications f; depend on the atoms of the center of £, which are of the form
a = (ayg, ..., o), where o; are atoms of %(&£y). But in genera, f; depend
on « and not only on «;. Let us give a simple example: Let 7 be a Hilbert
space over the complex numbers C, and U; # U, two unitary applications
on #. Put £, = P (¥) ® (P(#) X P(¥)), £, = P@F) ©® P(¥), f(p, g, O)
= (Uy(p), Uz(a)), and f(p, O, q) = (Ux(p), Ux(a)).

Remark 4. Suppose that for any i e | and for any atoms p; # ¢g; in M;,
there exist two atoms p and g in D such that P;(p) = pi, Pi(9) = g, and
P« £ g for any k # i. Suppose, moreover, that f satisfies f(p) L (@) - p
1 gfor any atomsp and q € D. Then we have that f,(p) L fi(g) - p L
g for any atoms p; and g; € M;. Indeed, if f;(p) L fi(q), then f(p) L f(q);
thus, by the hypothesis on f, p L g, and by the hypothesis on the domain
and definition of Lg, p; L Q.

As a consequence, if, moreover, ¥y are Hilbertian lattices over the
complex field, if M; are biorthogonal (i.e., f; are morphisms), and if the rank
of Im(f;) is greater than or equal to 3, then f; are induced by semilinear maps
which are unitary or antiunitary if they are quasilinear (see the introduction).

Finally, if the domain is maximal, then we have that the f; preserve the
orthogonality relation for al i (that is, fi(p) L fi(q) = p L g, 0p;, g €
&) if and only if IT;, f; preserves the orthogonality relation L .

4. CONCLUSION

We have shown that in a model where two separated entities with
classical degrees of freedom are described by the separated product of two
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Cartesian products over the classical degrees of freedom of Hilbertian lattices
and the evolution is described by a morphism, the systems can only interact
viatheir classical variables. We made two hypotheses on the domain of the
morphism, Hy, and Hy,, which physically mean essentially that for a given
initial state of the first system, there exist a large number of states of the
second system for which the system does not disappear during the evolution.

In a forthcoming paper, we will show that the relation: ®q; (o) € Qy,
for every o € Q, is a priori not satisfied in the construction of Aerts of
the property lattice of two separated entities when they interact. This work
was supported in part by the Swiss National Science Foundation.
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